![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimdv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
Ref | Expression |
---|---|
ralrimdv.1 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
Ref | Expression |
---|---|
ralrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
2 | 1 | imp 444 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 → 𝜒)) |
3 | 2 | ralrimiv 3067 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
4 | 3 | ex 449 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2103 ∀wral 3014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ral 3019 |
This theorem is referenced by: ralrimdva 3071 ralrimivv 3072 wefrc 5212 oneqmin 7122 nneneq 8259 cflm 9185 coflim 9196 isf32lem12 9299 axdc3lem2 9386 zorn2lem7 9437 axpre-sup 10103 zmax 11899 zbtwnre 11900 supxrunb2 12264 fzrevral 12539 islss4 19085 topbas 20899 elcls3 21010 neips 21040 clslp 21075 subbascn 21181 cnpnei 21191 comppfsc 21458 fgss2 21800 fbflim2 21903 alexsubALTlem3 21975 alexsubALTlem4 21976 alexsubALT 21977 metcnp3 22467 aalioulem3 24209 brbtwn2 25905 hial0 28189 hial02 28190 ococss 28382 lnopmi 29089 adjlnop 29175 pjss2coi 29253 pj3cor1i 29298 strlem3a 29341 hstrlem3a 29349 mdbr3 29386 mdbr4 29387 dmdmd 29389 dmdbr3 29394 dmdbr4 29395 dmdbr5 29397 ssmd2 29401 mdslmd1i 29418 mdsymlem7 29498 cdj1i 29522 cdj3lem2b 29526 lub0N 34896 glb0N 34900 hlrelat2 35109 snatpsubN 35456 pmaple 35467 pclclN 35597 pclfinN 35606 pclfinclN 35656 ltrneq2 35854 trlval2 35870 trlord 36276 trintALT 39533 lindslinindsimp2 42679 |
Copyright terms: Public domain | W3C validator |