MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrab2 Structured version   Visualization version   GIF version

Theorem ralrab2 3478
Description: Universal quantification over a restricted class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1 (𝑥 = 𝑦 → (𝜓𝜒))
Assertion
Ref Expression
ralrab2 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∀𝑦𝐴 (𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜑,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem ralrab2
StepHypRef Expression
1 df-rab 3023 . . 3 {𝑦𝐴𝜑} = {𝑦 ∣ (𝑦𝐴𝜑)}
21raleqi 3245 . 2 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∀𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)}𝜓)
3 ralab2.1 . . 3 (𝑥 = 𝑦 → (𝜓𝜒))
43ralab2 3477 . 2 (∀𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)}𝜓 ↔ ∀𝑦((𝑦𝐴𝜑) → 𝜒))
5 impexp 461 . . . 4 (((𝑦𝐴𝜑) → 𝜒) ↔ (𝑦𝐴 → (𝜑𝜒)))
65albii 1860 . . 3 (∀𝑦((𝑦𝐴𝜑) → 𝜒) ↔ ∀𝑦(𝑦𝐴 → (𝜑𝜒)))
7 df-ral 3019 . . 3 (∀𝑦𝐴 (𝜑𝜒) ↔ ∀𝑦(𝑦𝐴 → (𝜑𝜒)))
86, 7bitr4i 267 . 2 (∀𝑦((𝑦𝐴𝜑) → 𝜒) ↔ ∀𝑦𝐴 (𝜑𝜒))
92, 4, 83bitri 286 1 (∀𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∀𝑦𝐴 (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1594  wcel 2103  {cab 2710  wral 3014  {crab 3018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ral 3019  df-rab 3023
This theorem is referenced by:  efgsf  18263  ghmcnp  22040  nmogelb  22642  pntlem3  25418  sstotbnd2  33805
  Copyright terms: Public domain W3C validator