![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrab | Structured version Visualization version GIF version |
Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralrab | ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3396 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | imbi1i 338 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒)) |
4 | impexp 461 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
5 | 3, 4 | bitri 264 | . 2 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝜒) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
6 | 5 | ralbii2 3007 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 ∀wral 2941 {crab 2945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rab 2950 df-v 3233 |
This theorem is referenced by: frminex 5123 wereu2 5140 weniso 6644 zmin 11822 prmreclem1 15667 lublecllem 17035 mhmeql 17411 ghmeql 17730 pgpfac1lem5 18524 lmhmeql 19103 islindf4 20225 1stcfb 21296 fbssfi 21688 filssufilg 21762 txflf 21857 ptcmplem3 21905 symgtgp 21952 tgpconncompeqg 21962 cnllycmp 22802 ovolgelb 23294 dyadmax 23412 lhop1 23822 radcnvlt1 24217 frpomin 31863 noextenddif 31946 conway 32035 poimirlem4 33543 poimirlem32 33571 ismblfin 33580 igenval2 33995 glbconN 34981 mgmhmeql 42128 |
Copyright terms: Public domain | W3C validator |