![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralpr | Structured version Visualization version GIF version |
Description: Convert a quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralpr.1 | ⊢ 𝐴 ∈ V |
ralpr.2 | ⊢ 𝐵 ∈ V |
ralpr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ralpr.4 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralpr | ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralpr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ralpr.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | ralpr.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | ralpr.4 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
5 | 3, 4 | ralprg 4266 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) |
6 | 1, 2, 5 | mp2an 708 | 1 ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 {cpr 4212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-v 3233 df-sbc 3469 df-un 3612 df-sn 4211 df-pr 4213 |
This theorem is referenced by: fzprval 12439 fvinim0ffz 12627 wwlktovf1 13746 xpsfrnel 16270 xpsle 16288 isdrs2 16986 pmtrsn 17985 iblcnlem1 23599 lfuhgr1v0e 26191 nbgr2vtx1edg 26291 nbuhgr2vtx1edgb 26293 umgr2v2evd2 26479 2wlklem 26619 2wlkdlem5 26894 2wlkdlem10 26900 clwwlknonex2lem2 27083 3pthdlem1 27142 upgr4cycl4dv4e 27163 subfacp1lem3 31290 fprb 31795 poimirlem1 33540 ldepsnlinc 42622 |
Copyright terms: Public domain | W3C validator |