![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimia | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
Ref | Expression |
---|---|
ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | a2i 14 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralimi2 3079 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2131 ∀wral 3042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 |
This theorem depends on definitions: df-bi 197 df-ral 3047 |
This theorem is referenced by: ralimiaa 3081 ralimi 3082 r19.12 3193 rr19.3v 3477 rr19.28v 3478 exfo 6532 ffvresb 6549 f1mpt 6673 weniso 6759 ixpf 8088 ixpiunwdom 8653 tz9.12lem3 8817 dfac2a 9134 kmlem12 9167 axdc2lem 9454 ac6num 9485 ac6c4 9487 brdom6disj 9538 konigthlem 9574 arch 11473 cshw1 13760 serf0 14602 symgextfo 18034 baspartn 20952 ptcnplem 21618 spanuni 28704 lnopunilem1 29170 phpreu 33698 finixpnum 33699 poimirlem26 33740 indexa 33833 heiborlem5 33919 rngmgmbs4 34035 mzpincl 37791 dfac11 38126 stgoldbwt 42166 2zrngnmlid2 42453 |
Copyright terms: Public domain | W3C validator |