![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimi2 | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.) |
Ref | Expression |
---|---|
ralimi2.1 | ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
ralimi2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐵 → 𝜓)) | |
2 | 1 | alimi 1779 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) |
3 | df-ral 2946 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
4 | df-ral 2946 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜓)) | |
5 | 2, 3, 4 | 3imtr4i 281 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 ∈ wcel 2030 ∀wral 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-ral 2946 |
This theorem is referenced by: ralimia 2979 ralcom3 3134 tfi 7095 resixpfo 7988 omex 8578 kmlem1 9010 brdom5 9389 brdom4 9390 xrub 12180 pcmptcl 15642 itgeq2 23589 iblcnlem 23600 pntrsumbnd 25300 nmounbseqi 27760 nmounbseqiALT 27761 sumdmdi 29407 dmdbr4ati 29408 dmdbr6ati 29410 bnj110 31054 fiinfi 38195 |
Copyright terms: Public domain | W3C validator |