![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimdv | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1778). (Contributed by NM, 8-Oct-2003.) |
Ref | Expression |
---|---|
ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
3 | 2 | ralimdva 2991 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ∀wral 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ral 2946 |
This theorem is referenced by: poss 5066 sess1 5111 sess2 5112 riinint 5414 iinpreima 6385 dffo4 6415 dffo5 6416 isoini2 6629 tfindsg 7102 el2mpt2csbcl 7295 iiner 7862 xpf1o 8163 dffi3 8378 brwdom3 8528 xpwdomg 8531 bndrank 8742 cfub 9109 cff1 9118 cfflb 9119 cfslb2n 9128 cofsmo 9129 cfcoflem 9132 pwcfsdom 9443 fpwwe2lem13 9502 inawinalem 9549 grupr 9657 fsequb 12814 cau3lem 14138 caubnd2 14141 caubnd 14142 rlim2lt 14272 rlim3 14273 climshftlem 14349 isercolllem1 14439 climcau 14445 caucvgb 14454 serf0 14455 modfsummods 14569 cvgcmp 14592 mreriincl 16305 acsfn1c 16370 islss4 19010 riinopn 20761 fiinbas 20804 baspartn 20806 isclo2 20940 lmcls 21154 lmcnp 21156 isnrm3 21211 1stcelcls 21312 llyss 21330 nllyss 21331 ptpjpre1 21422 txlly 21487 txnlly 21488 tx1stc 21501 xkococnlem 21510 fbunfip 21720 filssufilg 21762 cnpflf2 21851 fcfnei 21886 isucn2 22130 rescncf 22747 lebnum 22810 cfilss 23114 fgcfil 23115 iscau4 23123 cmetcaulem 23132 cfilres 23140 caussi 23141 ovolunlem1 23311 ulmclm 24186 ulmcaulem 24193 ulmcau 24194 ulmss 24196 rlimcnp 24737 cxploglim 24749 lgsdchr 25125 pntlemp 25344 axcontlem4 25892 ewlkle 26557 uspgr2wlkeq 26598 umgrwlknloop 26601 wlkiswwlksupgr2 26831 3cyclfrgrrn2 27267 nmlnoubi 27779 lnon0 27781 disjpreima 29523 resspos 29787 resstos 29788 submarchi 29868 crefss 30044 iccllysconn 31358 cvmlift2lem1 31410 ss2mcls 31591 mclsax 31592 nosupno 31974 nosupres 31978 sssslt2 32032 poimirlem25 33564 poimirlem27 33566 upixp 33654 caushft 33687 sstotbnd3 33705 totbndss 33706 unichnidl 33960 ispridl2 33967 elrfirn2 37576 mzpsubst 37628 eluzrabdioph 37687 neik0pk1imk0 38662 limsupub 40254 limsupre3lem 40282 climuzlem 40293 xlimbr 40371 fourierdlem103 40744 fourierdlem104 40745 qndenserrnbllem 40832 ralralimp 41619 |
Copyright terms: Public domain | W3C validator |