![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralim | Structured version Visualization version GIF version |
Description: Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.) (Proof shortened by Wolf Lammen, 1-Dec-2019.) |
Ref | Expression |
---|---|
ralim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | ral2imi 2976 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-ral 2946 |
This theorem is referenced by: ralimdaa 2987 r19.30 3111 trint 4801 mpteqb 6338 tz7.49 7585 mptelixpg 7987 resixpfo 7988 bnd 8793 kmlem12 9021 lbzbi 11814 r19.29uz 14134 caubnd 14142 alzdvds 15089 ptclsg 21466 isucn2 22130 fusgreghash2wsp 27318 omssubadd 30490 dfon2lem8 31819 dford3lem2 37911 neik0pk1imk0 38662 |
Copyright terms: Public domain | W3C validator |