Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqf Structured version   Visualization version   GIF version

Theorem raleqf 3282
 Description: Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
raleq1f.1 𝑥𝐴
raleq1f.2 𝑥𝐵
Assertion
Ref Expression
raleqf (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))

Proof of Theorem raleqf
StepHypRef Expression
1 raleq1f.1 . . . 4 𝑥𝐴
2 raleq1f.2 . . . 4 𝑥𝐵
31, 2nfeq 2924 . . 3 𝑥 𝐴 = 𝐵
4 eleq2 2838 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54imbi1d 330 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
63, 5albid 2245 . 2 (𝐴 = 𝐵 → (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵𝜑)))
7 df-ral 3065 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
8 df-ral 3065 . 2 (∀𝑥𝐵 𝜑 ↔ ∀𝑥(𝑥𝐵𝜑))
96, 7, 83bitr4g 303 1 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1628   = wceq 1630   ∈ wcel 2144  Ⅎwnfc 2899  ∀wral 3060 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-ext 2750 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065 This theorem is referenced by:  raleq  3286  raleqbid  3298  dfon2lem3  32020  indexa  33853  ralbi12f  34294  iineq12f  34298  ac6s6f  34306  raleqd  39840  stoweidlem28  40756  stoweidlem52  40780  fourierdlem31  40866  fourierdlem68  40902  fourierdlem103  40937  fourierdlem104  40938
 Copyright terms: Public domain W3C validator