![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqbidva | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
Ref | Expression |
---|---|
raleqbidva.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
raleqbidva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidva.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidva 3123 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
3 | raleqbidva.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | raleqdv 3283 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
5 | 2, 4 | bitrd 268 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 |
This theorem is referenced by: catpropd 16590 cidpropd 16591 funcpropd 16781 fullpropd 16801 natpropd 16857 gsumpropd2lem 17494 istrkgc 25573 istrkgb 25574 istrkgcb 25575 istrkge 25576 iscgrg 25627 isperp 25827 clwlkclwwlk 27146 rngurd 30118 matunitlindflem1 33736 |
Copyright terms: Public domain | W3C validator |