MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raldifeq Structured version   Visualization version   GIF version

Theorem raldifeq 4201
Description: Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019.)
Hypotheses
Ref Expression
raldifeq.1 (𝜑𝐴𝐵)
raldifeq.2 (𝜑 → ∀𝑥 ∈ (𝐵𝐴)𝜓)
Assertion
Ref Expression
raldifeq (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem raldifeq
StepHypRef Expression
1 raldifeq.2 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐵𝐴)𝜓)
21biantrud 521 . . 3 (𝜑 → (∀𝑥𝐴 𝜓 ↔ (∀𝑥𝐴 𝜓 ∧ ∀𝑥 ∈ (𝐵𝐴)𝜓)))
3 ralunb 3945 . . 3 (∀𝑥 ∈ (𝐴 ∪ (𝐵𝐴))𝜓 ↔ (∀𝑥𝐴 𝜓 ∧ ∀𝑥 ∈ (𝐵𝐴)𝜓))
42, 3syl6bbr 278 . 2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥 ∈ (𝐴 ∪ (𝐵𝐴))𝜓))
5 raldifeq.1 . . . 4 (𝜑𝐴𝐵)
6 undif 4192 . . . 4 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
75, 6sylib 208 . . 3 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
87raleqdv 3293 . 2 (𝜑 → (∀𝑥 ∈ (𝐴 ∪ (𝐵𝐴))𝜓 ↔ ∀𝑥𝐵 𝜓))
94, 8bitrd 268 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wral 3061  cdif 3720  cun 3721  wss 3723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064
This theorem is referenced by:  cantnfrescl  8741  rrxmet  23410  ntrneiel2  38910  ntrneik4w  38924
  Copyright terms: Public domain W3C validator