![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralcom4 | Structured version Visualization version GIF version |
Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
ralcom4 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3246 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ V 𝜑 ↔ ∀𝑦 ∈ V ∀𝑥 ∈ 𝐴 𝜑) | |
2 | ralv 3371 | . . 3 ⊢ (∀𝑦 ∈ V 𝜑 ↔ ∀𝑦𝜑) | |
3 | 2 | ralbii 3129 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ V 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦𝜑) |
4 | ralv 3371 | . 2 ⊢ (∀𝑦 ∈ V ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | |
5 | 1, 3, 4 | 3bitr3i 290 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∀wal 1629 ∀wral 3061 Vcvv 3351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-v 3353 |
This theorem is referenced by: ralxpxfr2d 3477 uniiunlem 3841 iunss 4695 disjor 4768 trint 4901 reliun 5378 funimass4 6389 ralrnmpt2 6922 findcard3 8359 kmlem12 9185 fimaxre3 11172 vdwmc2 15890 ramtlecl 15911 iunocv 20242 1stccn 21487 itg2leub 23721 mptelee 25996 nmoubi 27967 nmopub 29107 nmfnleub 29124 moel 29663 disjorf 29730 funcnv5mpt 29809 untuni 31924 elintfv 32000 heibor1lem 33940 ineleq 34461 inecmo 34462 pmapglbx 35577 ss2iundf 38477 iunssf 39784 setrec1lem2 42963 |
Copyright terms: Public domain | W3C validator |