Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralcom13 Structured version   Visualization version   GIF version

Theorem ralcom13 3248
 Description: Swap first and third restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.)
Assertion
Ref Expression
ralcom13 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑧,𝐵   𝑥,𝑦,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑧)

Proof of Theorem ralcom13
StepHypRef Expression
1 ralcom 3246 . 2 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑦𝐵𝑥𝐴𝑧𝐶 𝜑)
2 ralcom 3246 . . 3 (∀𝑥𝐴𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑥𝐴 𝜑)
32ralbii 3129 . 2 (∀𝑦𝐵𝑥𝐴𝑧𝐶 𝜑 ↔ ∀𝑦𝐵𝑧𝐶𝑥𝐴 𝜑)
4 ralcom 3246 . 2 (∀𝑦𝐵𝑧𝐶𝑥𝐴 𝜑 ↔ ∀𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
51, 3, 43bitri 286 1 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196  ∀wral 3061 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clel 2767  df-nfc 2902  df-ral 3066 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator