![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralbidv2 | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 6-Apr-1997.) |
Ref | Expression |
---|---|
ralbidv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) |
Ref | Expression |
---|---|
ralbidv2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbidv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐵 → 𝜒))) | |
2 | 1 | albidv 1889 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒))) |
3 | df-ral 2946 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
4 | df-ral 2946 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 303 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 ∈ wcel 2030 ∀wral 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 |
This theorem depends on definitions: df-bi 197 df-ral 2946 |
This theorem is referenced by: ralbidva 3014 ralss 3701 oneqmini 5814 ordunisuc2 7086 dfsmo2 7489 wemapsolem 8496 zorn2lem1 9356 raluz 11774 limsupgle 14252 ello12 14291 elo12 14302 lo1resb 14339 rlimresb 14340 o1resb 14341 isprm3 15443 isprm7 15467 ist1 21173 ist1-2 21199 hausdiag 21496 xkopt 21506 cnflf 21853 cnfcf 21893 metcnp 22393 caucfil 23127 mdegleb 23869 eulerpartlemgvv 30566 filnetlem4 32501 hoidmvle 41135 elbigo2 42671 |
Copyright terms: Public domain | W3C validator |