![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralbi | Structured version Visualization version GIF version |
Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi 1786. (Contributed by NM, 6-Oct-2003.) |
Ref | Expression |
---|---|
ralbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 2970 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) | |
2 | rspa 2959 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | ralbida 3011 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wral 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1745 df-nf 1750 df-ral 2946 |
This theorem is referenced by: uniiunlem 3724 iineq2 4570 reusv2lem5 4903 ralrnmpt 6408 f1mpt 6558 mpt22eqb 6811 ralrnmpt2 6817 rankonidlem 8729 acni2 8907 kmlem8 9017 kmlem13 9022 fimaxre3 11008 cau3lem 14138 rlim2 14271 rlim0 14283 rlim0lt 14284 catpropd 16416 funcres2b 16604 ulmss 24196 lgamgulmlem6 24805 colinearalg 25835 axpasch 25866 axcontlem2 25890 axcontlem4 25892 axcontlem7 25895 axcontlem8 25896 neibastop3 32482 bj-0int 33180 ralbi12f 34099 iineq12f 34103 pmapglbx 35373 ordelordALTVD 39417 |
Copyright terms: Public domain | W3C validator |