![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralanid | Structured version Visualization version GIF version |
Description: Cancellation law for restriction. (Contributed by Peter Mazsa, 30-Dec-2018.) |
Ref | Expression |
---|---|
ralanid | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anclb 571 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | 1 | albii 1896 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
3 | df-ral 3056 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
4 | df-ral 3056 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
5 | 2, 3, 4 | 3bitr4ri 293 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1630 ∈ wcel 2140 ∀wral 3051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ral 3056 |
This theorem is referenced by: idinxpssinxp2 34432 |
Copyright terms: Public domain | W3C validator |