![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ral2imi | Structured version Visualization version GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.) Allow shortening of ralim 2977. (Revised by Wolf Lammen, 1-Dec-2019.) |
Ref | Expression |
---|---|
ral2imi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ral2imi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2946 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | ral2imi.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 2 | imim3i 64 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐴 → 𝜒))) |
4 | 3 | al2imi 1783 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜒))) |
5 | df-ral 2946 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
6 | df-ral 2946 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜒)) | |
7 | 4, 5, 6 | 3imtr4g 285 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
8 | 1, 7 | sylbi 207 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 ∈ wcel 2030 ∀wral 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-ral 2946 |
This theorem is referenced by: ralim 2977 rexim 3037 r19.26 3093 iiner 7862 ss2ixp 7963 undifixp 7986 boxriin 7992 acni2 8907 axcc4 9299 intgru 9674 ingru 9675 prdsdsval3 16192 mrcmndind 17413 hauscmplem 21257 uspgr2wlkeq 26598 wlkp1lem8 26633 prdstotbnd 33723 |
Copyright terms: Public domain | W3C validator |