![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > raddcn | Structured version Visualization version GIF version |
Description: Addition in the real numbers is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) |
Ref | Expression |
---|---|
raddcn.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
Ref | Expression |
---|---|
raddcn | ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
2 | 1 | addcn 22790 | . . . . 5 ⊢ + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
3 | ax-resscn 10106 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
4 | xpss12 5233 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
5 | 3, 3, 4 | mp2an 710 | . . . . 5 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
6 | 1 | cnfldtop 22709 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ Top |
7 | 1 | cnfldtopon 22708 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
8 | 7 | toponunii 20844 | . . . . . . 7 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
9 | 6, 6, 8, 8 | txunii 21519 | . . . . . 6 ⊢ (ℂ × ℂ) = ∪ ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) |
10 | 9 | cnrest 21212 | . . . . 5 ⊢ (( + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ( + ↾ (ℝ × ℝ)) ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld))) |
11 | 2, 5, 10 | mp2an 710 | . . . 4 ⊢ ( + ↾ (ℝ × ℝ)) ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld)) |
12 | reex 10140 | . . . . . . 7 ⊢ ℝ ∈ V | |
13 | txrest 21557 | . . . . . . 7 ⊢ ((((TopOpen‘ℂfld) ∈ Top ∧ (TopOpen‘ℂfld) ∈ Top) ∧ (ℝ ∈ V ∧ ℝ ∈ V)) → (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ))) | |
14 | 6, 6, 12, 12, 13 | mp4an 711 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ)) |
15 | raddcn.1 | . . . . . . . 8 ⊢ 𝐽 = (topGen‘ran (,)) | |
16 | 1 | tgioo2 22728 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
17 | 15, 16 | eqtr2i 2747 | . . . . . . 7 ⊢ ((TopOpen‘ℂfld) ↾t ℝ) = 𝐽 |
18 | 17, 17 | oveq12i 6777 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ)) = (𝐽 ×t 𝐽) |
19 | 14, 18 | eqtri 2746 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (𝐽 ×t 𝐽) |
20 | 19 | oveq1i 6775 | . . . 4 ⊢ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld)) = ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) |
21 | 11, 20 | eleqtri 2801 | . . 3 ⊢ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) |
22 | ax-addf 10128 | . . . . . . . . . 10 ⊢ + :(ℂ × ℂ)⟶ℂ | |
23 | ffn 6158 | . . . . . . . . . 10 ⊢ ( + :(ℂ × ℂ)⟶ℂ → + Fn (ℂ × ℂ)) | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ + Fn (ℂ × ℂ) |
25 | fnssres 6117 | . . . . . . . . 9 ⊢ (( + Fn (ℂ × ℂ) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) | |
26 | 24, 5, 25 | mp2an 710 | . . . . . . . 8 ⊢ ( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) |
27 | fnov 6885 | . . . . . . . 8 ⊢ (( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦))) | |
28 | 26, 27 | mpbi 220 | . . . . . . 7 ⊢ ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦)) |
29 | ovres 6917 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥( + ↾ (ℝ × ℝ))𝑦) = (𝑥 + 𝑦)) | |
30 | 29 | mpt2eq3ia 6837 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) |
31 | 28, 30 | eqtri 2746 | . . . . . 6 ⊢ ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) |
32 | 31 | rneqi 5459 | . . . . 5 ⊢ ran ( + ↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) |
33 | readdcl 10132 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | |
34 | 33 | rgen2a 3079 | . . . . . 6 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + 𝑦) ∈ ℝ |
35 | eqid 2724 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) | |
36 | 35 | rnmpt2ss 29703 | . . . . . 6 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + 𝑦) ∈ ℝ → ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ⊆ ℝ) |
37 | 34, 36 | ax-mp 5 | . . . . 5 ⊢ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ⊆ ℝ |
38 | 32, 37 | eqsstri 3741 | . . . 4 ⊢ ran ( + ↾ (ℝ × ℝ)) ⊆ ℝ |
39 | cnrest2 21213 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran ( + ↾ (ℝ × ℝ)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) ↔ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ)))) | |
40 | 7, 38, 3, 39 | mp3an 1537 | . . 3 ⊢ (( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) ↔ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ))) |
41 | 21, 40 | mpbi 220 | . 2 ⊢ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ)) |
42 | 17 | oveq2i 6776 | . 2 ⊢ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ)) = ((𝐽 ×t 𝐽) Cn 𝐽) |
43 | 41, 31, 42 | 3eltr3i 2815 | 1 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1596 ∈ wcel 2103 ∀wral 3014 Vcvv 3304 ⊆ wss 3680 × cxp 5216 ran crn 5219 ↾ cres 5220 Fn wfn 5996 ⟶wf 5997 ‘cfv 6001 (class class class)co 6765 ↦ cmpt2 6767 ℂcc 10047 ℝcr 10048 + caddc 10052 (,)cioo 12289 ↾t crest 16204 TopOpenctopn 16205 topGenctg 16221 ℂfldccnfld 19869 Topctop 20821 TopOnctopon 20838 Cn ccn 21151 ×t ctx 21486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-inf2 8651 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 ax-addf 10128 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-iin 4631 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-of 7014 df-om 7183 df-1st 7285 df-2nd 7286 df-supp 7416 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-2o 7681 df-oadd 7684 df-er 7862 df-map 7976 df-ixp 8026 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-fsupp 8392 df-fi 8433 df-sup 8464 df-inf 8465 df-oi 8531 df-card 8878 df-cda 9103 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-uz 11801 df-q 11903 df-rp 11947 df-xneg 12060 df-xadd 12061 df-xmul 12062 df-ioo 12293 df-icc 12296 df-fz 12441 df-fzo 12581 df-seq 12917 df-exp 12976 df-hash 13233 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-abs 14096 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-ress 15988 df-plusg 16077 df-mulr 16078 df-starv 16079 df-sca 16080 df-vsca 16081 df-ip 16082 df-tset 16083 df-ple 16084 df-ds 16087 df-unif 16088 df-hom 16089 df-cco 16090 df-rest 16206 df-topn 16207 df-0g 16225 df-gsum 16226 df-topgen 16227 df-pt 16228 df-prds 16231 df-xrs 16285 df-qtop 16290 df-imas 16291 df-xps 16293 df-mre 16369 df-mrc 16370 df-acs 16372 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-submnd 17458 df-mulg 17663 df-cntz 17871 df-cmn 18316 df-psmet 19861 df-xmet 19862 df-met 19863 df-bl 19864 df-mopn 19865 df-cnfld 19870 df-top 20822 df-topon 20839 df-topsp 20860 df-bases 20873 df-cn 21154 df-cnp 21155 df-tx 21488 df-hmeo 21681 df-xms 22247 df-ms 22248 df-tms 22249 |
This theorem is referenced by: rrvadd 30744 |
Copyright terms: Public domain | W3C validator |