MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlem2 Structured version   Visualization version   GIF version

Theorem radcnvlem2 24367
Description: Lemma for radcnvlt1 24371, radcnvle 24373. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
psergf.x (𝜑𝑋 ∈ ℂ)
radcnvlem2.y (𝜑𝑌 ∈ ℂ)
radcnvlem2.a (𝜑 → (abs‘𝑋) < (abs‘𝑌))
radcnvlem2.c (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
Assertion
Ref Expression
radcnvlem2 (𝜑 → seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )
Distinct variable group:   𝑥,𝑛,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛)   𝑌(𝑥,𝑛)

Proof of Theorem radcnvlem2
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11915 . 2 0 = (ℤ‘0)
2 1nn0 11500 . . 3 1 ∈ ℕ0
32a1i 11 . 2 (𝜑 → 1 ∈ ℕ0)
4 id 22 . . . . . 6 (𝑚 = 𝑘𝑚 = 𝑘)
5 fveq2 6352 . . . . . . 7 (𝑚 = 𝑘 → ((𝐺𝑋)‘𝑚) = ((𝐺𝑋)‘𝑘))
65fveq2d 6356 . . . . . 6 (𝑚 = 𝑘 → (abs‘((𝐺𝑋)‘𝑚)) = (abs‘((𝐺𝑋)‘𝑘)))
74, 6oveq12d 6831 . . . . 5 (𝑚 = 𝑘 → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
8 eqid 2760 . . . . 5 (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
9 ovex 6841 . . . . 5 (𝑘 · (abs‘((𝐺𝑋)‘𝑘))) ∈ V
107, 8, 9fvmpt 6444 . . . 4 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
1110adantl 473 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
12 nn0re 11493 . . . . 5 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
1312adantl 473 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
14 pser.g . . . . . . 7 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
15 radcnv.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
16 psergf.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
1714, 15, 16psergf 24365 . . . . . 6 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
1817ffvelrnda 6522 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑋)‘𝑘) ∈ ℂ)
1918abscld 14374 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑘)) ∈ ℝ)
2013, 19remulcld 10262 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝑘 · (abs‘((𝐺𝑋)‘𝑘))) ∈ ℝ)
2111, 20eqeltrd 2839 . 2 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘) ∈ ℝ)
22 fvco3 6437 . . . 4 (((𝐺𝑋):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) = (abs‘((𝐺𝑋)‘𝑘)))
2317, 22sylan 489 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) = (abs‘((𝐺𝑋)‘𝑘)))
2419recnd 10260 . . 3 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑘)) ∈ ℂ)
2523, 24eqeltrd 2839 . 2 ((𝜑𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) ∈ ℂ)
26 radcnvlem2.y . . 3 (𝜑𝑌 ∈ ℂ)
27 radcnvlem2.a . . 3 (𝜑 → (abs‘𝑋) < (abs‘𝑌))
28 radcnvlem2.c . . 3 (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
297cbvmptv 4902 . . 3 (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
3014, 15, 16, 26, 27, 28, 29radcnvlem1 24366 . 2 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))) ∈ dom ⇝ )
31 1red 10247 . 2 (𝜑 → 1 ∈ ℝ)
32 1red 10247 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 1 ∈ ℝ)
33 elnnuz 11917 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
34 nnnn0 11491 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3533, 34sylbir 225 . . . . 5 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ0)
3635, 13sylan2 492 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℝ)
3735, 19sylan2 492 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘((𝐺𝑋)‘𝑘)) ∈ ℝ)
3818absge0d 14382 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (abs‘((𝐺𝑋)‘𝑘)))
3935, 38sylan2 492 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 0 ≤ (abs‘((𝐺𝑋)‘𝑘)))
40 eluzle 11892 . . . . 5 (𝑘 ∈ (ℤ‘1) → 1 ≤ 𝑘)
4140adantl 473 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 1 ≤ 𝑘)
4232, 36, 37, 39, 41lemul1ad 11155 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (1 · (abs‘((𝐺𝑋)‘𝑘))) ≤ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
43 absidm 14262 . . . . . 6 (((𝐺𝑋)‘𝑘) ∈ ℂ → (abs‘(abs‘((𝐺𝑋)‘𝑘))) = (abs‘((𝐺𝑋)‘𝑘)))
4418, 43syl 17 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘(abs‘((𝐺𝑋)‘𝑘))) = (abs‘((𝐺𝑋)‘𝑘)))
4523fveq2d 6356 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) = (abs‘(abs‘((𝐺𝑋)‘𝑘))))
4624mulid2d 10250 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 · (abs‘((𝐺𝑋)‘𝑘))) = (abs‘((𝐺𝑋)‘𝑘)))
4744, 45, 463eqtr4d 2804 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) = (1 · (abs‘((𝐺𝑋)‘𝑘))))
4835, 47sylan2 492 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) = (1 · (abs‘((𝐺𝑋)‘𝑘))))
4911oveq2d 6829 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)) = (1 · (𝑘 · (abs‘((𝐺𝑋)‘𝑘)))))
5020recnd 10260 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 · (abs‘((𝐺𝑋)‘𝑘))) ∈ ℂ)
5150mulid2d 10250 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 · (𝑘 · (abs‘((𝐺𝑋)‘𝑘)))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
5249, 51eqtrd 2794 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
5335, 52sylan2 492 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
5442, 48, 533brtr4d 4836 . 2 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) ≤ (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)))
551, 3, 21, 25, 30, 31, 54cvgcmpce 14749 1 (𝜑 → seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139   class class class wbr 4804  cmpt 4881  dom cdm 5266  ccom 5270  wf 6045  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cn 11212  0cn0 11484  cuz 11879  seqcseq 12995  cexp 13054  abscabs 14173  cli 14414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-ico 12374  df-fz 12520  df-fzo 12660  df-fl 12787  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616
This theorem is referenced by:  radcnvlem3  24368  radcnvlt1  24371
  Copyright terms: Public domain W3C validator