Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlem1 Structured version   Visualization version   GIF version

 Description: Lemma for radcnvlt1 24371, radcnvle 24373. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋, even if the terms in the sequence are multiplied by 𝑛. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
psergf.x (𝜑𝑋 ∈ ℂ)
radcnvlem2.a (𝜑 → (abs‘𝑋) < (abs‘𝑌))
radcnvlem2.c (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
radcnvlem1.h 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
Assertion
Ref Expression
radcnvlem1 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
Distinct variable groups:   𝑚,𝑛,𝑥,𝐴   𝑚,𝐻   𝜑,𝑚   𝑚,𝑋   𝑚,𝐺   𝑚,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛)   𝑋(𝑥,𝑛)   𝑌(𝑥,𝑛)

Dummy variables 𝑖 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11915 . . 3 0 = (ℤ‘0)
2 0zd 11581 . . 3 (𝜑 → 0 ∈ ℤ)
3 1rp 12029 . . . 4 1 ∈ ℝ+
43a1i 11 . . 3 (𝜑 → 1 ∈ ℝ+)
5 radcnvlem2.y . . . 4 (𝜑𝑌 ∈ ℂ)
6 pser.g . . . . 5 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
76pserval2 24364 . . . 4 ((𝑌 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑌)‘𝑘) = ((𝐴𝑘) · (𝑌𝑘)))
85, 7sylan 489 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑌)‘𝑘) = ((𝐴𝑘) · (𝑌𝑘)))
9 fvexd 6364 . . . 4 (𝜑 → (𝐺𝑌) ∈ V)
10 radcnvlem2.c . . . 4 (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
11 radcnv.a . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
126, 11, 5psergf 24365 . . . . 5 (𝜑 → (𝐺𝑌):ℕ0⟶ℂ)
1312ffvelrnda 6522 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑌)‘𝑘) ∈ ℂ)
141, 2, 9, 10, 13serf0 14610 . . 3 (𝜑 → (𝐺𝑌) ⇝ 0)
151, 2, 4, 8, 14climi0 14442 . 2 (𝜑 → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)
16 simprl 811 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝑗 ∈ ℕ0)
17 nn0re 11493 . . . . . . 7 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
1817adantl 473 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℝ)
19 psergf.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
2019adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝑋 ∈ ℂ)
2120abscld 14374 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑋) ∈ ℝ)
225adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝑌 ∈ ℂ)
2322abscld 14374 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑌) ∈ ℝ)
24 0red 10233 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
2519abscld 14374 . . . . . . . . . . 11 (𝜑 → (abs‘𝑋) ∈ ℝ)
265abscld 14374 . . . . . . . . . . 11 (𝜑 → (abs‘𝑌) ∈ ℝ)
2719absge0d 14382 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘𝑋))
28 radcnvlem2.a . . . . . . . . . . 11 (𝜑 → (abs‘𝑋) < (abs‘𝑌))
2924, 25, 26, 27, 28lelttrd 10387 . . . . . . . . . 10 (𝜑 → 0 < (abs‘𝑌))
3029gt0ne0d 10784 . . . . . . . . 9 (𝜑 → (abs‘𝑌) ≠ 0)
3130adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑌) ≠ 0)
3221, 23, 31redivcld 11045 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ)
33 reexpcl 13071 . . . . . . 7 ((((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ ∧ 𝑖 ∈ ℕ0) → (((abs‘𝑋) / (abs‘𝑌))↑𝑖) ∈ ℝ)
3432, 33sylan 489 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) → (((abs‘𝑋) / (abs‘𝑌))↑𝑖) ∈ ℝ)
3518, 34remulcld 10262 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑖 ∈ ℕ0) → (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)) ∈ ℝ)
36 eqid 2760 . . . . 5 (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖))) = (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))
3735, 36fmptd 6548 . . . 4 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖))):ℕ0⟶ℝ)
3837ffvelrnda 6522 . . 3 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚) ∈ ℝ)
39 nn0re 11493 . . . . . . . . 9 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
4039adantl 473 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℝ)
416, 11, 19psergf 24365 . . . . . . . . . 10 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
4241ffvelrnda 6522 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝐺𝑋)‘𝑚) ∈ ℂ)
4342abscld 14374 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑚)) ∈ ℝ)
4440, 43remulcld 10262 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ ℝ)
45 radcnvlem1.h . . . . . . 7 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
4644, 45fmptd 6548 . . . . . 6 (𝜑𝐻:ℕ0⟶ℝ)
4746adantr 472 . . . . 5 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 𝐻:ℕ0⟶ℝ)
4847ffvelrnda 6522 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → (𝐻𝑚) ∈ ℝ)
4948recnd 10260 . . 3 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ ℕ0) → (𝐻𝑚) ∈ ℂ)
5025, 26, 30redivcld 11045 . . . . . 6 (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ)
5150recnd 10260 . . . . 5 (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℂ)
52 divge0 11084 . . . . . . . 8 ((((abs‘𝑋) ∈ ℝ ∧ 0 ≤ (abs‘𝑋)) ∧ ((abs‘𝑌) ∈ ℝ ∧ 0 < (abs‘𝑌))) → 0 ≤ ((abs‘𝑋) / (abs‘𝑌)))
5325, 27, 26, 29, 52syl22anc 1478 . . . . . . 7 (𝜑 → 0 ≤ ((abs‘𝑋) / (abs‘𝑌)))
5450, 53absidd 14360 . . . . . 6 (𝜑 → (abs‘((abs‘𝑋) / (abs‘𝑌))) = ((abs‘𝑋) / (abs‘𝑌)))
5526recnd 10260 . . . . . . . . 9 (𝜑 → (abs‘𝑌) ∈ ℂ)
5655mulid1d 10249 . . . . . . . 8 (𝜑 → ((abs‘𝑌) · 1) = (abs‘𝑌))
5728, 56breqtrrd 4832 . . . . . . 7 (𝜑 → (abs‘𝑋) < ((abs‘𝑌) · 1))
58 1red 10247 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
59 ltdivmul 11090 . . . . . . . 8 (((abs‘𝑋) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝑌) ∈ ℝ ∧ 0 < (abs‘𝑌))) → (((abs‘𝑋) / (abs‘𝑌)) < 1 ↔ (abs‘𝑋) < ((abs‘𝑌) · 1)))
6025, 58, 26, 29, 59syl112anc 1481 . . . . . . 7 (𝜑 → (((abs‘𝑋) / (abs‘𝑌)) < 1 ↔ (abs‘𝑋) < ((abs‘𝑌) · 1)))
6157, 60mpbird 247 . . . . . 6 (𝜑 → ((abs‘𝑋) / (abs‘𝑌)) < 1)
6254, 61eqbrtrd 4826 . . . . 5 (𝜑 → (abs‘((abs‘𝑋) / (abs‘𝑌))) < 1)
6336geomulcvg 14806 . . . . 5 ((((abs‘𝑋) / (abs‘𝑌)) ∈ ℂ ∧ (abs‘((abs‘𝑋) / (abs‘𝑌))) < 1) → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))) ∈ dom ⇝ )
6451, 62, 63syl2anc 696 . . . 4 (𝜑 → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))) ∈ dom ⇝ )
6564adantr 472 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → seq0( + , (𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))) ∈ dom ⇝ )
66 1red 10247 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → 1 ∈ ℝ)
6741ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐺𝑋):ℕ0⟶ℂ)
68 eluznn0 11950 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ0)
6916, 68sylan 489 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ0)
7067, 69ffvelrnd 6523 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐺𝑋)‘𝑚) ∈ ℂ)
7170abscld 14374 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐺𝑋)‘𝑚)) ∈ ℝ)
7232adantr 472 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑋) / (abs‘𝑌)) ∈ ℝ)
7372, 69reexpcld 13219 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((abs‘𝑋) / (abs‘𝑌))↑𝑚) ∈ ℝ)
7469nn0red 11544 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℝ)
7569nn0ge0d 11546 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ 𝑚)
7611ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝐴:ℕ0⟶ℂ)
7776, 69ffvelrnd 6523 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐴𝑚) ∈ ℂ)
785ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑌 ∈ ℂ)
7978, 69expcld 13202 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑌𝑚) ∈ ℂ)
8077, 79mulcld 10252 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐴𝑚) · (𝑌𝑚)) ∈ ℂ)
8180abscld 14374 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) ∈ ℝ)
82 1red 10247 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 1 ∈ ℝ)
8319ad2antrr 764 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑋 ∈ ℂ)
8483abscld 14374 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑋) ∈ ℝ)
8584, 69reexpcld 13219 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑋)↑𝑚) ∈ ℝ)
8683absge0d 14382 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ (abs‘𝑋))
8784, 69, 86expge0d 13220 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ ((abs‘𝑋)↑𝑚))
88 simprr 813 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)
89 fveq2 6352 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝐴𝑘) = (𝐴𝑚))
90 oveq2 6821 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑌𝑘) = (𝑌𝑚))
9189, 90oveq12d 6831 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((𝐴𝑘) · (𝑌𝑘)) = ((𝐴𝑚) · (𝑌𝑚)))
9291fveq2d 6356 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (abs‘((𝐴𝑘) · (𝑌𝑘))) = (abs‘((𝐴𝑚) · (𝑌𝑚))))
9392breq1d 4814 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((abs‘((𝐴𝑘) · (𝑌𝑘))) < 1 ↔ (abs‘((𝐴𝑚) · (𝑌𝑚))) < 1))
9493rspccva 3448 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1 ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) < 1)
9588, 94sylan 489 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) < 1)
96 1re 10231 . . . . . . . . . . . 12 1 ∈ ℝ
97 ltle 10318 . . . . . . . . . . . 12 (((abs‘((𝐴𝑚) · (𝑌𝑚))) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) < 1 → (abs‘((𝐴𝑚) · (𝑌𝑚))) ≤ 1))
9881, 96, 97sylancl 697 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) < 1 → (abs‘((𝐴𝑚) · (𝑌𝑚))) ≤ 1))
9995, 98mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑌𝑚))) ≤ 1)
10081, 82, 85, 87, 99lemul1ad 11155 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)) ≤ (1 · ((abs‘𝑋)↑𝑚)))
10183, 69expcld 13202 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑋𝑚) ∈ ℂ)
10277, 101mulcld 10252 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐴𝑚) · (𝑋𝑚)) ∈ ℂ)
103102, 79absmuld 14392 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚))) = ((abs‘((𝐴𝑚) · (𝑋𝑚))) · (abs‘(𝑌𝑚))))
10480, 101absmuld 14392 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑌𝑚)) · (𝑋𝑚))) = ((abs‘((𝐴𝑚) · (𝑌𝑚))) · (abs‘(𝑋𝑚))))
10577, 79, 101mul32d 10438 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((𝐴𝑚) · (𝑌𝑚)) · (𝑋𝑚)) = (((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚)))
106105fveq2d 6356 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑌𝑚)) · (𝑋𝑚))) = (abs‘(((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚))))
10783, 69absexpd 14390 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑋𝑚)) = ((abs‘𝑋)↑𝑚))
108107oveq2d 6829 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) · (abs‘(𝑋𝑚))) = ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)))
109104, 106, 1083eqtr3d 2802 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(((𝐴𝑚) · (𝑋𝑚)) · (𝑌𝑚))) = ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)))
11078, 69absexpd 14390 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑌𝑚)) = ((abs‘𝑌)↑𝑚))
111110oveq2d 6829 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑋𝑚))) · (abs‘(𝑌𝑚))) = ((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)))
112103, 109, 1113eqtr3d 2802 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑌𝑚))) · ((abs‘𝑋)↑𝑚)) = ((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)))
11385recnd 10260 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑋)↑𝑚) ∈ ℂ)
114113mulid2d 10250 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (1 · ((abs‘𝑋)↑𝑚)) = ((abs‘𝑋)↑𝑚))
115100, 112, 1143brtr3d 4835 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚))
116102abscld 14374 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑋𝑚))) ∈ ℝ)
11723adantr 472 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑌) ∈ ℝ)
118117, 69reexpcld 13219 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((abs‘𝑌)↑𝑚) ∈ ℝ)
119 eluzelz 11889 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
120119adantl 473 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℤ)
12129ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 < (abs‘𝑌))
122 expgt0 13087 . . . . . . . . . 10 (((abs‘𝑌) ∈ ℝ ∧ 𝑚 ∈ ℤ ∧ 0 < (abs‘𝑌)) → 0 < ((abs‘𝑌)↑𝑚))
123117, 120, 121, 122syl3anc 1477 . . . . . . . . 9 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 < ((abs‘𝑌)↑𝑚))
124 lemuldiv 11095 . . . . . . . . 9 (((abs‘((𝐴𝑚) · (𝑋𝑚))) ∈ ℝ ∧ ((abs‘𝑋)↑𝑚) ∈ ℝ ∧ (((abs‘𝑌)↑𝑚) ∈ ℝ ∧ 0 < ((abs‘𝑌)↑𝑚))) → (((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚) ↔ (abs‘((𝐴𝑚) · (𝑋𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚))))
125116, 85, 118, 123, 124syl112anc 1481 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((abs‘((𝐴𝑚) · (𝑋𝑚))) · ((abs‘𝑌)↑𝑚)) ≤ ((abs‘𝑋)↑𝑚) ↔ (abs‘((𝐴𝑚) · (𝑋𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚))))
126115, 125mpbid 222 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐴𝑚) · (𝑋𝑚))) ≤ (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚)))
1276pserval2 24364 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((𝐺𝑋)‘𝑚) = ((𝐴𝑚) · (𝑋𝑚)))
12883, 69, 127syl2anc 696 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝐺𝑋)‘𝑚) = ((𝐴𝑚) · (𝑋𝑚)))
129128fveq2d 6356 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐺𝑋)‘𝑚)) = (abs‘((𝐴𝑚) · (𝑋𝑚))))
13021recnd 10260 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑋) ∈ ℂ)
131130adantr 472 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑋) ∈ ℂ)
13223recnd 10260 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → (abs‘𝑌) ∈ ℂ)
133132adantr 472 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑌) ∈ ℂ)
13430ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘𝑌) ≠ 0)
135131, 133, 134, 69expdivd 13216 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (((abs‘𝑋) / (abs‘𝑌))↑𝑚) = (((abs‘𝑋)↑𝑚) / ((abs‘𝑌)↑𝑚)))
136126, 129, 1353brtr4d 4836 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘((𝐺𝑋)‘𝑚)) ≤ (((abs‘𝑋) / (abs‘𝑌))↑𝑚))
13771, 73, 74, 75, 136lemul2ad 11156 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ≤ (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
13874, 71remulcld 10262 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ ℝ)
13970absge0d 14382 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ (abs‘((𝐺𝑋)‘𝑚)))
14074, 71, 75, 139mulge0d 10796 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → 0 ≤ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
141138, 140absidd 14360 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) = (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
14274, 73remulcld 10262 . . . . . . 7 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ ℝ)
143142recnd 10260 . . . . . 6 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ ℂ)
144143mulid2d 10250 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
145137, 141, 1443brtr4d 4836 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) ≤ (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))))
146 ovex 6841 . . . . . 6 (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ V
14745fvmpt2 6453 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) ∈ V) → (𝐻𝑚) = (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
14869, 146, 147sylancl 697 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐻𝑚) = (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
149148fveq2d 6356 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝐻𝑚)) = (abs‘(𝑚 · (abs‘((𝐺𝑋)‘𝑚)))))
150 id 22 . . . . . . . 8 (𝑖 = 𝑚𝑖 = 𝑚)
151 oveq2 6821 . . . . . . . 8 (𝑖 = 𝑚 → (((abs‘𝑋) / (abs‘𝑌))↑𝑖) = (((abs‘𝑋) / (abs‘𝑌))↑𝑚))
152150, 151oveq12d 6831 . . . . . . 7 (𝑖 = 𝑚 → (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
153 ovex 6841 . . . . . . 7 (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)) ∈ V
154152, 36, 153fvmpt 6444 . . . . . 6 (𝑚 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
15569, 154syl 17 . . . . 5 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚) = (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚)))
156155oveq2d 6829 . . . 4 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (1 · ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚)) = (1 · (𝑚 · (((abs‘𝑋) / (abs‘𝑌))↑𝑚))))
157145, 149, 1563brtr4d 4836 . . 3 (((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) ∧ 𝑚 ∈ (ℤ𝑗)) → (abs‘(𝐻𝑚)) ≤ (1 · ((𝑖 ∈ ℕ0 ↦ (𝑖 · (((abs‘𝑋) / (abs‘𝑌))↑𝑖)))‘𝑚)))
1581, 16, 38, 49, 65, 66, 157cvgcmpce 14749 . 2 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐴𝑘) · (𝑌𝑘))) < 1)) → seq0( + , 𝐻) ∈ dom ⇝ )
15915, 158rexlimddv 3173 1 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050  Vcvv 3340   class class class wbr 4804   ↦ cmpt 4881  dom cdm 5266  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  ℂcc 10126  ℝcr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266   ≤ cle 10267   / cdiv 10876  ℕ0cn0 11484  ℤcz 11569  ℤ≥cuz 11879  ℝ+crp 12025  seqcseq 12995  ↑cexp 13054  abscabs 14173   ⇝ cli 14414 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-ico 12374  df-fz 12520  df-fzo 12660  df-fl 12787  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616 This theorem is referenced by:  radcnvlem2  24367  radcnvlt1  24371
 Copyright terms: Public domain W3C validator