![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > radcnvcl | Structured version Visualization version GIF version |
Description: The radius of convergence 𝑅 of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
radcnv.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
radcnv.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
Ref | Expression |
---|---|
radcnvcl | ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | radcnv.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
2 | ssrab2 3826 | . . . . 5 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ | |
3 | ressxr 10273 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
4 | 2, 3 | sstri 3751 | . . . 4 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* |
5 | supxrcl 12336 | . . . 4 ⊢ ({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) | |
6 | 4, 5 | mp1i 13 | . . 3 ⊢ (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) |
7 | 1, 6 | syl5eqel 2841 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
8 | pser.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
9 | radcnv.a | . . . . 5 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
10 | 8, 9 | radcnv0 24367 | . . . 4 ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
11 | supxrub 12345 | . . . 4 ⊢ (({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* ∧ 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) → 0 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) | |
12 | 4, 10, 11 | sylancr 698 | . . 3 ⊢ (𝜑 → 0 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
13 | 12, 1 | syl6breqr 4844 | . 2 ⊢ (𝜑 → 0 ≤ 𝑅) |
14 | pnfge 12155 | . . 3 ⊢ (𝑅 ∈ ℝ* → 𝑅 ≤ +∞) | |
15 | 7, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ≤ +∞) |
16 | 0xr 10276 | . . 3 ⊢ 0 ∈ ℝ* | |
17 | pnfxr 10282 | . . 3 ⊢ +∞ ∈ ℝ* | |
18 | elicc1 12410 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞))) | |
19 | 16, 17, 18 | mp2an 710 | . 2 ⊢ (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞)) |
20 | 7, 13, 15, 19 | syl3anbrc 1429 | 1 ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1630 ∈ wcel 2137 {crab 3052 ⊆ wss 3713 class class class wbr 4802 ↦ cmpt 4879 dom cdm 5264 ⟶wf 6043 ‘cfv 6047 (class class class)co 6811 supcsup 8509 ℂcc 10124 ℝcr 10125 0cc0 10126 + caddc 10129 · cmul 10131 +∞cpnf 10261 ℝ*cxr 10263 < clt 10264 ≤ cle 10265 ℕ0cn0 11482 [,]cicc 12369 seqcseq 12993 ↑cexp 13052 ⇝ cli 14412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-inf2 8709 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 ax-pre-sup 10204 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-1st 7331 df-2nd 7332 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-1o 7727 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-fin 8123 df-sup 8511 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-div 10875 df-nn 11211 df-2 11269 df-n0 11483 df-z 11568 df-uz 11878 df-rp 12024 df-icc 12373 df-fz 12518 df-seq 12994 df-exp 13053 df-cj 14036 df-re 14037 df-im 14038 df-sqrt 14172 df-abs 14173 df-clim 14416 |
This theorem is referenced by: radcnvlt1 24369 radcnvle 24371 pserulm 24373 psercnlem2 24375 psercnlem1 24376 psercn 24377 pserdvlem1 24378 pserdvlem2 24379 abelthlem3 24384 abelth 24392 logtayl 24603 |
Copyright terms: Public domain | W3C validator |