MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnv0 Structured version   Visualization version   GIF version

Theorem radcnv0 24215
Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
Assertion
Ref Expression
radcnv0 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝐺(𝑥,𝑛)

Proof of Theorem radcnv0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0red 10079 . 2 (𝜑 → 0 ∈ ℝ)
2 nn0uz 11760 . . 3 0 = (ℤ‘0)
3 0zd 11427 . . 3 (𝜑 → 0 ∈ ℤ)
4 snfi 8079 . . . 4 {0} ∈ Fin
54a1i 11 . . 3 (𝜑 → {0} ∈ Fin)
6 0nn0 11345 . . . . 5 0 ∈ ℕ0
76a1i 11 . . . 4 (𝜑 → 0 ∈ ℕ0)
87snssd 4372 . . 3 (𝜑 → {0} ⊆ ℕ0)
9 ifid 4158 . . . 4 if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = ((𝐺‘0)‘𝑘)
10 0cnd 10071 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
11 pser.g . . . . . . . . 9 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
1211pserval2 24210 . . . . . . . 8 ((0 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
1310, 12sylan 487 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
1413adantr 480 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
15 simpr 476 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
16 elnn0 11332 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
1715, 16sylib 208 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
1817ord 391 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0))
19 velsn 4226 . . . . . . . . . . 11 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2018, 19syl6ibr 242 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ {0}))
2120con1d 139 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ {0} → 𝑘 ∈ ℕ))
2221imp 444 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ)
23220expd 13064 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (0↑𝑘) = 0)
2423oveq2d 6706 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴𝑘) · 0))
25 radcnv.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
2625ffvelrnda 6399 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
2726adantr 480 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (𝐴𝑘) ∈ ℂ)
2827mul01d 10273 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴𝑘) · 0) = 0)
2914, 24, 283eqtrd 2689 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = 0)
3029ifeq2da 4150 . . . 4 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0))
319, 30syl5eqr 2699 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0))
328sselda 3636 . . . 4 ((𝜑𝑘 ∈ {0}) → 𝑘 ∈ ℕ0)
3311, 25, 10psergf 24211 . . . . 5 (𝜑 → (𝐺‘0):ℕ0⟶ℂ)
3433ffvelrnda 6399 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) ∈ ℂ)
3532, 34syldan 486 . . 3 ((𝜑𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) ∈ ℂ)
362, 3, 5, 8, 31, 35fsumcvg3 14504 . 2 (𝜑 → seq0( + , (𝐺‘0)) ∈ dom ⇝ )
37 fveq2 6229 . . . . 5 (𝑟 = 0 → (𝐺𝑟) = (𝐺‘0))
3837seqeq3d 12849 . . . 4 (𝑟 = 0 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺‘0)))
3938eleq1d 2715 . . 3 (𝑟 = 0 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘0)) ∈ dom ⇝ ))
4039elrab 3396 . 2 (0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ (0 ∈ ℝ ∧ seq0( + , (𝐺‘0)) ∈ dom ⇝ ))
411, 36, 40sylanbrc 699 1 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1523  wcel 2030  {crab 2945  ifcif 4119  {csn 4210  cmpt 4762  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  Fincfn 7997  cc 9972  cr 9973  0cc0 9974   + caddc 9977   · cmul 9979  cn 11058  0cn0 11330  seqcseq 12841  cexp 12900  cli 14259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263
This theorem is referenced by:  radcnvcl  24216  radcnvrat  38830
  Copyright terms: Public domain W3C validator