![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > radcnv0 | Structured version Visualization version GIF version |
Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
radcnv.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
Ref | Expression |
---|---|
radcnv0 | ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 10079 | . 2 ⊢ (𝜑 → 0 ∈ ℝ) | |
2 | nn0uz 11760 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
3 | 0zd 11427 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
4 | snfi 8079 | . . . 4 ⊢ {0} ∈ Fin | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → {0} ∈ Fin) |
6 | 0nn0 11345 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℕ0) |
8 | 7 | snssd 4372 | . . 3 ⊢ (𝜑 → {0} ⊆ ℕ0) |
9 | ifid 4158 | . . . 4 ⊢ if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = ((𝐺‘0)‘𝑘) | |
10 | 0cnd 10071 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ ℂ) | |
11 | pser.g | . . . . . . . . 9 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
12 | 11 | pserval2 24210 | . . . . . . . 8 ⊢ ((0 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
13 | 10, 12 | sylan 487 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
14 | 13 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
15 | simpr 476 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
16 | elnn0 11332 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) | |
17 | 15, 16 | sylib 208 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0)) |
18 | 17 | ord 391 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0)) |
19 | velsn 4226 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) | |
20 | 18, 19 | syl6ibr 242 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ {0})) |
21 | 20 | con1d 139 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ {0} → 𝑘 ∈ ℕ)) |
22 | 21 | imp 444 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ) |
23 | 22 | 0expd 13064 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (0↑𝑘) = 0) |
24 | 23 | oveq2d 6706 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴‘𝑘) · (0↑𝑘)) = ((𝐴‘𝑘) · 0)) |
25 | radcnv.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
26 | 25 | ffvelrnda 6399 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
27 | 26 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (𝐴‘𝑘) ∈ ℂ) |
28 | 27 | mul01d 10273 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴‘𝑘) · 0) = 0) |
29 | 14, 24, 28 | 3eqtrd 2689 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = 0) |
30 | 29 | ifeq2da 4150 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0)) |
31 | 9, 30 | syl5eqr 2699 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0)) |
32 | 8 | sselda 3636 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ0) |
33 | 11, 25, 10 | psergf 24211 | . . . . 5 ⊢ (𝜑 → (𝐺‘0):ℕ0⟶ℂ) |
34 | 33 | ffvelrnda 6399 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) ∈ ℂ) |
35 | 32, 34 | syldan 486 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) ∈ ℂ) |
36 | 2, 3, 5, 8, 31, 35 | fsumcvg3 14504 | . 2 ⊢ (𝜑 → seq0( + , (𝐺‘0)) ∈ dom ⇝ ) |
37 | fveq2 6229 | . . . . 5 ⊢ (𝑟 = 0 → (𝐺‘𝑟) = (𝐺‘0)) | |
38 | 37 | seqeq3d 12849 | . . . 4 ⊢ (𝑟 = 0 → seq0( + , (𝐺‘𝑟)) = seq0( + , (𝐺‘0))) |
39 | 38 | eleq1d 2715 | . . 3 ⊢ (𝑟 = 0 → (seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘0)) ∈ dom ⇝ )) |
40 | 39 | elrab 3396 | . 2 ⊢ (0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ↔ (0 ∈ ℝ ∧ seq0( + , (𝐺‘0)) ∈ dom ⇝ )) |
41 | 1, 36, 40 | sylanbrc 699 | 1 ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 ifcif 4119 {csn 4210 ↦ cmpt 4762 dom cdm 5143 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 Fincfn 7997 ℂcc 9972 ℝcr 9973 0cc0 9974 + caddc 9977 · cmul 9979 ℕcn 11058 ℕ0cn0 11330 seqcseq 12841 ↑cexp 12900 ⇝ cli 14259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 |
This theorem is referenced by: radcnvcl 24216 radcnvrat 38830 |
Copyright terms: Public domain | W3C validator |