![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabtru | Structured version Visualization version GIF version |
Description: Abstract builder using the constant wff ⊤ (Contributed by Thierry Arnoux, 4-May-2020.) |
Ref | Expression |
---|---|
rabtru.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
rabtru | ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2866 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
2 | rabtru.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nftru 1843 | . . . 4 ⊢ Ⅎ𝑥⊤ | |
4 | biidd 252 | . . . 4 ⊢ (𝑥 = 𝑦 → (⊤ ↔ ⊤)) | |
5 | 1, 2, 3, 4 | elrabf 3465 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ⊤} ↔ (𝑦 ∈ 𝐴 ∧ ⊤)) |
6 | tru 1600 | . . . 4 ⊢ ⊤ | |
7 | 6 | biantru 527 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ 𝐴 ∧ ⊤)) |
8 | 5, 7 | bitr4i 267 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ⊤} ↔ 𝑦 ∈ 𝐴) |
9 | 8 | eqriv 2721 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1596 ⊤wtru 1597 ∈ wcel 2103 Ⅎwnfc 2853 {crab 3018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-rab 3023 df-v 3306 |
This theorem is referenced by: mptexgf 6601 aciunf1 29693 |
Copyright terms: Public domain | W3C validator |