MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabss Structured version   Visualization version   GIF version

Theorem rabss 3820
Description: Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
rabss ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rabss
StepHypRef Expression
1 df-rab 3059 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
21sseq1i 3770 . 2 ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐵)
3 abss 3812 . 2 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐵 ↔ ∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵))
4 impexp 461 . . . 4 (((𝑥𝐴𝜑) → 𝑥𝐵) ↔ (𝑥𝐴 → (𝜑𝑥𝐵)))
54albii 1896 . . 3 (∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥𝐵)))
6 df-ral 3055 . . 3 (∀𝑥𝐴 (𝜑𝑥𝐵) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥𝐵)))
75, 6bitr4i 267 . 2 (∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵) ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
82, 3, 73bitri 286 1 ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1630  wcel 2139  {cab 2746  wral 3050  {crab 3054  wss 3715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rab 3059  df-in 3722  df-ss 3729
This theorem is referenced by:  rabssdv  3823  fnsuppres  7491  wemapso2lem  8622  tskwe2  9787  grothac  9844  uzwo3  11976  fsuppmapnn0fiub0  12987  dvdsssfz1  15242  phibndlem  15677  dfphi2  15681  ramval  15914  mgmidsssn0  17470  istopon  20919  ordtrest2lem  21209  filssufilg  21916  cfinufil  21933  blsscls2  22510  nmhmcn  23120  ovolshftlem2  23478  atansssdm  24859  umgrres1lem  26401  upgrres1  26404  sspval  27887  ubthlem2  28036  ordtrest2NEWlem  30277  truae  30615  poimirlem30  33752  nnubfi  33859  prnc  34179  supminfrnmpt  40170  supminfxrrnmpt  40199  itgperiod  40700  fourierdlem81  40907  ovnsupge0  41277  smflimlem2  41486
  Copyright terms: Public domain W3C validator