Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabidim1 Structured version   Visualization version   GIF version

Theorem rabidim1 3256
 Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
rabidim1 (𝑥 ∈ {𝑥𝐴𝜑} → 𝑥𝐴)

Proof of Theorem rabidim1
StepHypRef Expression
1 rabid 3254 . 2 (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
21simplbi 478 1 (𝑥 ∈ {𝑥𝐴𝜑} → 𝑥𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2139  {crab 3054 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-12 2196  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-an 385  df-tru 1635  df-ex 1854  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-rab 3059 This theorem is referenced by:  frgrwopreglem5  27475  frgrwopreg  27477  ssrab2f  39799  infnsuprnmpt  39964  pimrecltpos  41425  pimrecltneg  41439  smfresal  41501  smfpimbor1lem2  41512  smflimmpt  41522  smfsupmpt  41527  smfinfmpt  41531  smflimsuplem7  41538  smflimsuplem8  41539  smflimsupmpt  41541  smfliminfmpt  41544
 Copyright terms: Public domain W3C validator