![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabid2 | Structured version Visualization version GIF version |
Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rabid2 | ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2868 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | pm4.71 665 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
3 | 2 | albii 1894 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
4 | 1, 3 | bitr4i 267 | . 2 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
5 | df-rab 3057 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
6 | 5 | eqeq2i 2770 | . 2 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
7 | df-ral 3053 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
8 | 4, 6, 7 | 3bitr4i 292 | 1 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1628 = wceq 1630 ∈ wcel 2137 {cab 2744 ∀wral 3048 {crab 3052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-ral 3053 df-rab 3057 |
This theorem is referenced by: rabxm 4102 iinrab2 4733 riinrab 4746 class2seteq 4980 dmmptg 5791 wfisg 5874 dmmptd 6183 fneqeql 6486 fmpt 6542 zfrep6 7297 axdc2lem 9460 ioomax 12439 iccmax 12440 hashbc 13427 lcmf0 15547 dfphi2 15679 phiprmpw 15681 phisum 15695 isnsg4 17836 symggen2 18089 psgnfvalfi 18131 lssuni 19140 psr1baslem 19755 psgnghm2 20127 ocv0 20221 dsmmfi 20282 frlmfibas 20305 frlmlbs 20336 ordtrest2lem 21207 comppfsc 21535 xkouni 21602 xkoccn 21622 tsmsfbas 22130 clsocv 23247 ehlbase 23392 ovolicc2lem4 23486 itg2monolem1 23714 musum 25114 lgsquadlem2 25303 umgr2v2evd2 26631 frgrregorufr0 27476 ubthlem1 28033 xrsclat 29987 psgndmfi 30153 ordtrest2NEWlem 30275 hasheuni 30454 measvuni 30584 imambfm 30631 subfacp1lem6 31472 connpconn 31522 cvmliftmolem2 31569 cvmlift2lem12 31601 tfisg 32019 frpoinsg 32045 frinsg 32049 poimirlem28 33748 fdc 33852 isbnd3 33894 pmap1N 35554 pol1N 35697 dia1N 36842 dihwN 37078 vdioph 37843 fiphp3d 37883 dmmptdf 39914 stirlinglem14 40805 fvmptrabdm 41815 suppdm 42808 |
Copyright terms: Public domain | W3C validator |