Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabfodom Structured version   Visualization version   GIF version

Theorem rabfodom 29676
Description: Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020.)
Hypotheses
Ref Expression
rabfodom.1 ((𝜑𝑥𝐴𝑦 = (𝐹𝑥)) → (𝜒𝜓))
rabfodom.2 (𝜑𝐴𝑉)
rabfodom.3 (𝜑𝐹:𝐴onto𝐵)
Assertion
Ref Expression
rabfodom (𝜑 → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem rabfodom
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3352 . . . . . 6 𝑎 ∈ V
21rabex 4943 . . . . 5 {𝑥𝑎𝜓} ∈ V
3 eqid 2770 . . . . . 6 (𝑥𝑎 ↦ (𝐹𝑥)) = (𝑥𝑎 ↦ (𝐹𝑥))
4 rabfodom.3 . . . . . . . . . . . 12 (𝜑𝐹:𝐴onto𝐵)
5 fof 6256 . . . . . . . . . . . 12 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
64, 5syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐴𝐵)
76feqmptd 6391 . . . . . . . . . 10 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
87ad2antrr 697 . . . . . . . . 9 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
98reseq1d 5533 . . . . . . . 8 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝐹𝑎) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ 𝑎))
10 elpwi 4305 . . . . . . . . . 10 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
1110ad2antlr 698 . . . . . . . . 9 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → 𝑎𝐴)
1211resmptd 5593 . . . . . . . 8 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ 𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)))
139, 12eqtrd 2804 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝐹𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)))
14 f1oeq1 6268 . . . . . . . 8 ((𝐹𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)) → ((𝐹𝑎):𝑎1-1-onto𝐵 ↔ (𝑥𝑎 ↦ (𝐹𝑥)):𝑎1-1-onto𝐵))
1514biimpa 462 . . . . . . 7 (((𝐹𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝑥𝑎 ↦ (𝐹𝑥)):𝑎1-1-onto𝐵)
1613, 15sylancom 568 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝑥𝑎 ↦ (𝐹𝑥)):𝑎1-1-onto𝐵)
17 simp1ll 1301 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝜑)
18113ad2ant1 1126 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑎𝐴)
19 simp2 1130 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑥𝑎)
2018, 19sseldd 3751 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑥𝐴)
21 simp3 1131 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
22 rabfodom.1 . . . . . . 7 ((𝜑𝑥𝐴𝑦 = (𝐹𝑥)) → (𝜒𝜓))
2317, 20, 21, 22syl3anc 1475 . . . . . 6 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → (𝜒𝜓))
243, 16, 23f1oresrab 6537 . . . . 5 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → ((𝑥𝑎 ↦ (𝐹𝑥)) ↾ {𝑥𝑎𝜓}):{𝑥𝑎𝜓}–1-1-onto→{𝑦𝐵𝜒})
25 f1oeng 8127 . . . . 5 (({𝑥𝑎𝜓} ∈ V ∧ ((𝑥𝑎 ↦ (𝐹𝑥)) ↾ {𝑥𝑎𝜓}):{𝑥𝑎𝜓}–1-1-onto→{𝑦𝐵𝜒}) → {𝑥𝑎𝜓} ≈ {𝑦𝐵𝜒})
262, 24, 25sylancr 567 . . . 4 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝑎𝜓} ≈ {𝑦𝐵𝜒})
2726ensymd 8159 . . 3 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑦𝐵𝜒} ≈ {𝑥𝑎𝜓})
28 rabfodom.2 . . . . . 6 (𝜑𝐴𝑉)
29 rabexg 4942 . . . . . 6 (𝐴𝑉 → {𝑥𝐴𝜓} ∈ V)
3028, 29syl 17 . . . . 5 (𝜑 → {𝑥𝐴𝜓} ∈ V)
3130ad2antrr 697 . . . 4 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝐴𝜓} ∈ V)
32 rabss2 3832 . . . . 5 (𝑎𝐴 → {𝑥𝑎𝜓} ⊆ {𝑥𝐴𝜓})
3311, 32syl 17 . . . 4 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝑎𝜓} ⊆ {𝑥𝐴𝜓})
34 ssdomg 8154 . . . 4 ({𝑥𝐴𝜓} ∈ V → ({𝑥𝑎𝜓} ⊆ {𝑥𝐴𝜓} → {𝑥𝑎𝜓} ≼ {𝑥𝐴𝜓}))
3531, 33, 34sylc 65 . . 3 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝑎𝜓} ≼ {𝑥𝐴𝜓})
36 endomtr 8166 . . 3 (({𝑦𝐵𝜒} ≈ {𝑥𝑎𝜓} ∧ {𝑥𝑎𝜓} ≼ {𝑥𝐴𝜓}) → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
3727, 35, 36syl2anc 565 . 2 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
38 foresf1o 29675 . . 3 ((𝐴𝑉𝐹:𝐴onto𝐵) → ∃𝑎 ∈ 𝒫 𝐴(𝐹𝑎):𝑎1-1-onto𝐵)
3928, 4, 38syl2anc 565 . 2 (𝜑 → ∃𝑎 ∈ 𝒫 𝐴(𝐹𝑎):𝑎1-1-onto𝐵)
4037, 39r19.29a 3225 1 (𝜑 → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wrex 3061  {crab 3064  Vcvv 3349  wss 3721  𝒫 cpw 4295   class class class wbr 4784  cmpt 4861  cres 5251  wf 6027  ontowfo 6029  1-1-ontowf1o 6030  cfv 6031  cen 8105  cdom 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-reg 8652  ax-inf2 8701  ax-ac2 9486
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-r1 8790  df-rank 8791  df-card 8964  df-ac 9138
This theorem is referenced by:  locfinreflem  30241
  Copyright terms: Public domain W3C validator