![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabfmpunirn | Structured version Visualization version GIF version |
Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 30-Sep-2016.) |
Ref | Expression |
---|---|
rabfmpunirn.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑊 ∣ 𝜑}) |
rabfmpunirn.2 | ⊢ 𝑊 ∈ V |
rabfmpunirn.3 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabfmpunirn | ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabfmpunirn.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑊 ∣ 𝜑}) | |
2 | df-rab 3070 | . . . . 5 ⊢ {𝑦 ∈ 𝑊 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)} | |
3 | 2 | mpteq2i 4875 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑊 ∣ 𝜑}) = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)}) |
4 | 1, 3 | eqtri 2793 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)}) |
5 | rabfmpunirn.2 | . . . 4 ⊢ 𝑊 ∈ V | |
6 | 5 | zfausab 4944 | . . 3 ⊢ {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)} ∈ V |
7 | eleq1 2838 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊)) | |
8 | rabfmpunirn.3 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) | |
9 | 7, 8 | anbi12d 616 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝑦 ∈ 𝑊 ∧ 𝜑) ↔ (𝐵 ∈ 𝑊 ∧ 𝜓))) |
10 | 4, 6, 9 | abfmpunirn 29792 | . 2 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓))) |
11 | elex 3364 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
12 | 11 | adantr 466 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝜓) → 𝐵 ∈ V) |
13 | 12 | rexlimivw 3177 | . . 3 ⊢ (∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓) → 𝐵 ∈ V) |
14 | 13 | pm4.71ri 550 | . 2 ⊢ (∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓) ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓))) |
15 | 10, 14 | bitr4i 267 | 1 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 {cab 2757 ∃wrex 3062 {crab 3065 Vcvv 3351 ∪ cuni 4574 ↦ cmpt 4863 ran crn 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-fv 6039 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |