![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabexg | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
Ref | Expression |
---|---|
rabexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3793 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | ssexg 4912 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | |
3 | 1, 2 | mpan 708 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2103 {crab 3018 Vcvv 3304 ⊆ wss 3680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-rab 3023 df-v 3306 df-in 3687 df-ss 3694 |
This theorem is referenced by: rabex 4920 rabexd 4921 class2set 4937 exse 5182 elfvmptrab1 6419 elovmpt2rab 6997 elovmpt2rab1 6998 ovmpt3rabdm 7009 elovmpt3rab1 7010 suppval 7417 mpt2xopoveq 7465 wdom2d 8601 scottex 8861 tskwe 8889 fin1a2lem12 9346 hashbclem 13349 wrdnfi 13445 wrd2f1tovbij 13825 hashdvds 15603 hashbcval 15829 brric 18867 psrass1lem 19500 psrcom 19532 dmatval 20421 cpmat 20637 fctop 20931 cctop 20933 ppttop 20934 epttop 20936 cldval 20950 neif 21027 neival 21029 neiptoptop 21058 neiptopnei 21059 ordtbaslem 21115 ordtbas2 21118 ordtopn1 21121 ordtopn2 21122 ordtrest2lem 21130 cmpsublem 21325 kgenval 21461 qtopval 21621 kqfval 21649 ordthmeolem 21727 elmptrab 21753 fbssfi 21763 fgval 21796 flimval 21889 flimfnfcls 21954 ptcmplem2 21979 ptcmplem3 21980 tsmsfbas 22053 eltsms 22058 utopval 22158 blvalps 22312 blval 22313 minveclem3b 23320 minveclem3 23321 minveclem4 23324 fusgredgfi 26337 nbgrval 26349 cusgrsize 26481 wwlks 26859 wwlksnextbij 26941 clwwlk 27027 vdn0conngrumgrv2 27269 vdgn1frgrv2 27371 frgrwopreglem1 27387 rabfodom 29572 ordtrest2NEWlem 30198 hasheuni 30377 sigaval 30403 ldgenpisyslem1 30456 ddemeas 30529 braew 30535 imambfm 30554 carsgval 30595 iscvm 31469 cvmsval 31476 fwddifval 32496 fnessref 32579 indexa 33760 supex2g 33764 rfovfvfvd 38716 rfovcnvf1od 38717 fsovfvfvd 38724 fsovcnvlem 38726 cnfex 39603 stoweidlem26 40663 stoweidlem31 40668 stoweidlem34 40671 stoweidlem46 40683 stoweidlem59 40696 salexct 40972 caragenval 41130 dmatALTbas 42617 lcoop 42627 |
Copyright terms: Public domain | W3C validator |