![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabexd | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 4847. (Contributed by AV, 16-Jul-2019.) |
Ref | Expression |
---|---|
rabexd.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
rabexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
rabexd | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexd.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
2 | rabexd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rabexg 4844 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
5 | 1, 4 | syl5eqel 2734 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 {crab 2945 Vcvv 3231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-in 3614 df-ss 3621 |
This theorem is referenced by: rabex2 4847 zorn2lem1 9356 sylow2a 18080 evlslem6 19561 mretopd 20944 cusgrexilem1 26391 vtxdgf 26423 stoweidlem35 40570 stoweidlem50 40585 stoweidlem57 40592 stoweidlem59 40594 subsaliuncllem 40893 subsaliuncl 40894 smflimlem1 41300 smflimlem2 41301 smflimlem3 41302 smflimlem6 41305 smfrec 41317 smfpimcclem 41334 smfsuplem1 41338 smfinflem 41344 smflimsuplem1 41347 smflimsuplem2 41348 smflimsuplem3 41349 smflimsuplem4 41350 smflimsuplem5 41351 smflimsuplem7 41353 fvmptrab 41631 |
Copyright terms: Public domain | W3C validator |