![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabex2 | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
rabex2.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rabex2 | ⊢ 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
3 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
4 | 2, 3 | rabexd 4965 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 {crab 3054 Vcvv 3340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-in 3722 df-ss 3729 |
This theorem is referenced by: rab2ex 4967 mapfien2 8481 cantnffval 8735 nqex 9957 gsumvalx 17491 psgnfval 18140 odval 18173 sylow1lem2 18234 sylow3lem6 18267 ablfaclem1 18704 psrass1lem 19599 psrbas 19600 psrelbas 19601 psrmulfval 19607 psrmulcllem 19609 psrvscaval 19614 psr0cl 19616 psr0lid 19617 psrnegcl 19618 psrlinv 19619 psr1cl 19624 psrlidm 19625 psrdi 19628 psrdir 19629 psrass23l 19630 psrcom 19631 psrass23 19632 mvrval 19643 mplsubglem 19656 mpllsslem 19657 mplsubrglem 19661 mplvscaval 19670 mplmon 19685 mplmonmul 19686 mplcoe1 19687 ltbval 19693 opsrtoslem2 19707 mplmon2 19715 evlslem2 19734 evlslem3 19736 evlslem1 19737 rrxmet 23411 mdegldg 24045 lgamgulmlem5 24979 lgamgulmlem6 24980 lgamgulm2 24982 lgamcvglem 24986 upgrres1lem1 26421 frgrwopreg1 27493 dlwwlknondlwlknonen 27548 eulerpartlem1 30759 eulerpartlemt 30763 eulerpartgbij 30764 ballotlemoex 30877 mapdunirnN 37459 pwfi2en 38187 smfresal 41519 oddiadd 42342 2zrngadd 42465 2zrngmul 42473 |
Copyright terms: Public domain | W3C validator |