Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabeqel Structured version   Visualization version   GIF version

Theorem rabeqel 34362
Description: Class element of a restricted class abstraction. (Contributed by Peter Mazsa, 24-Jul-2021.)
Hypotheses
Ref Expression
rabeqel.1 𝐵 = {𝑥𝐴𝜑}
rabeqel.2 (𝑥 = 𝐶 → (𝜑𝜓))
Assertion
Ref Expression
rabeqel (𝐶𝐵 ↔ (𝜓𝐶𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem rabeqel
StepHypRef Expression
1 rabeqel.2 . . 3 (𝑥 = 𝐶 → (𝜑𝜓))
2 rabeqel.1 . . 3 𝐵 = {𝑥𝐴𝜑}
31, 2elrab2 3518 . 2 (𝐶𝐵 ↔ (𝐶𝐴𝜓))
43biancom 34339 1 (𝐶𝐵 ↔ (𝜓𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  {crab 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rab 3070  df-v 3353
This theorem is referenced by:  elrefrels2  34609  elrefrels3  34610  elcnvrefrels2  34622  elcnvrefrels3  34623  elsymrels2  34641  elsymrels3  34642  elsymrels4  34643  elsymrels5  34644  elrefsymrels2  34657
  Copyright terms: Public domain W3C validator