![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabeqel | Structured version Visualization version GIF version |
Description: Class element of a restricted class abstraction. (Contributed by Peter Mazsa, 24-Jul-2021.) |
Ref | Expression |
---|---|
rabeqel.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
rabeqel.2 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabeqel | ⊢ (𝐶 ∈ 𝐵 ↔ (𝜓 ∧ 𝐶 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqel.2 | . . 3 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜓)) | |
2 | rabeqel.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
3 | 1, 2 | elrab2 3518 | . 2 ⊢ (𝐶 ∈ 𝐵 ↔ (𝐶 ∈ 𝐴 ∧ 𝜓)) |
4 | 3 | biancom 34339 | 1 ⊢ (𝐶 ∈ 𝐵 ↔ (𝜓 ∧ 𝐶 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 {crab 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-rab 3070 df-v 3353 |
This theorem is referenced by: elrefrels2 34609 elrefrels3 34610 elcnvrefrels2 34622 elcnvrefrels3 34623 elsymrels2 34641 elsymrels3 34642 elsymrels4 34643 elsymrels5 34644 elrefsymrels2 34657 |
Copyright terms: Public domain | W3C validator |