![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqdv | Structured version Visualization version GIF version |
Description: Equality of restricted class abstractions. Deduction form of rabeq 3223. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | rabeq 3223 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 {crab 2945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 |
This theorem is referenced by: rabeqbidv 3226 rabeqbidva 3227 rabsnif 4290 fvmptrabfv 6348 cantnffval 8598 dfphi2 15526 mrisval 16337 coafval 16761 pmtrfval 17916 dprdval 18448 eengv 25904 incistruhgr 26019 isupgr 26024 upgrop 26034 isumgr 26035 upgrun 26058 umgrun 26060 isuspgr 26092 isusgr 26093 isuspgrop 26101 isusgrop 26102 isausgr 26104 ausgrusgrb 26105 usgrstrrepe 26172 lfuhgr1v0e 26191 usgrexmpl 26200 usgrexi 26393 cusgrsize 26406 1loopgrvd2 26455 wwlksn 26785 wspthsn 26797 iswwlksnon 26802 iswwlksnonOLD 26803 iswspthsnon 26806 iswspthsnonOLD 26807 clwwlknOLD 26986 clwwlknonmpt2 27062 clwwlknon 27063 clwwlknonOLD 27064 clwwlk0on0 27067 mpstval 31558 pclfvalN 35493 etransclem11 40780 fvmptrabdm 41632 |
Copyright terms: Public domain | W3C validator |