![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqbidv | Structured version Visualization version GIF version |
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
Ref | Expression |
---|---|
rabeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
rabeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabeqbidv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | rabeqdv 3298 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
3 | rabeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 3 | rabbidv 3293 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
5 | 2, 4 | eqtrd 2758 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1596 {crab 3018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rab 3023 |
This theorem is referenced by: elfvmptrab1 6419 fvmptrabfv 6423 elovmpt2rab1 6998 ovmpt3rab1 7008 suppval 7417 mpt2xopoveq 7465 supeq123d 8472 phival 15595 dfphi2 15602 hashbcval 15829 imasval 16294 ismre 16373 mrisval 16413 isacs 16434 monfval 16514 ismon 16515 monpropd 16519 natfval 16728 isnat 16729 initoval 16769 termoval 16770 gsumvalx 17392 gsumpropd 17394 gsumress 17398 ismhm 17459 issubm 17469 issubg 17716 isnsg 17745 isgim 17826 isga 17845 cntzfval 17874 isslw 18144 isirred 18820 dfrhm2 18840 isrim0 18846 issubrg 18903 abvfval 18941 lssset 19057 islmhm 19150 islmim 19185 islbs 19199 rrgval 19410 mplval 19551 mplbaspropd 19730 ocvfval 20133 isobs 20187 dsmmval 20201 islinds 20271 dmatval 20421 scmatval 20433 cpmat 20637 cldval 20950 mretopd 21019 neifval 21026 ordtval 21116 ordtbas2 21118 ordtcnv 21128 ordtrest2 21131 cnfval 21160 cnpfval 21161 kgenval 21461 xkoval 21513 dfac14 21544 qtopval 21621 qtopval2 21622 hmeofval 21684 elmptrab 21753 fgval 21796 flimval 21889 utopval 22158 ucnval 22203 iscfilu 22214 ispsmet 22231 ismet 22250 isxmet 22251 blfvalps 22310 cncfval 22813 ishtpy 22893 isphtpy 22902 om1val 22951 cfilfval 23183 caufval 23194 cpnfval 23815 uc1pval 24019 mon1pval 24021 dchrval 25079 istrkgl 25477 israg 25712 iseqlg 25867 ttgval 25875 nbgrval 26349 uvtxavalOLD 26409 vtxdgfval 26494 vtxdeqd 26504 1egrvtxdg1 26536 umgr2v2evd2 26554 wwlks 26859 wwlksn 26861 wspthsn 26873 wwlksnon 26876 wspthsnon 26877 iswspthsnon 26882 iswspthsnonOLD 26883 rusgrnumwwlklem 27013 clwwlk 27027 clwwlkn 27072 clwwlknOLD 27073 2clwwlk 27425 numclwwlkovgOLD 27429 numclwlk1lem2 27452 numclwwlkovh0 27454 numclwwlkovq 27456 numclwwlkovhOLD 27464 lnoval 27837 bloval 27866 hmoval 27895 ordtprsuni 30195 sigagenval 30433 faeval 30539 ismbfm 30544 carsgval 30595 sitgval 30624 reprval 30918 erdszelem3 31403 erdsze 31412 kur14 31426 iscvm 31469 wlimeq12 31991 fwddifval 32496 poimirlem28 33669 istotbnd 33800 isbnd 33811 rngohomval 33995 rngoisoval 34008 idlval 34044 pridlval 34064 maxidlval 34070 igenval 34092 lshpset 34685 lflset 34766 pats 34992 llnset 35211 lplnset 35235 lvolset 35278 lineset 35444 pmapfval 35462 paddfval 35503 lhpset 35701 ldilfset 35814 ltrnfset 35823 ltrnset 35824 dilfsetN 35859 trnfsetN 35862 trnsetN 35863 diaffval 36738 diafval 36739 dicffval 36882 dochffval 37057 lpolsetN 37190 lcdfval 37296 lcdval 37297 mapdffval 37334 mapdfval 37335 isnacs 37686 mzpclval 37707 issdrg 38186 k0004val 38867 fourierdlem2 40746 fourierdlem3 40747 etransclem12 40883 etransclem33 40904 caragenval 41130 smflimlem3 41404 fvmptrab 41733 iccpval 41778 ismgmhm 42210 issubmgm 42216 assintopval 42268 rnghmval 42318 isrngisom 42323 dmatALTval 42616 lcoop 42627 |
Copyright terms: Public domain | W3C validator |