![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeq0 | Structured version Visualization version GIF version |
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
rabeq0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab0 4059 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rab 3023 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 2 | eqeq1i 2729 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = ∅) |
4 | raln 3093 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 292 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 383 ∀wal 1594 = wceq 1596 ∈ wcel 2103 {cab 2710 ∀wral 3014 {crab 3018 ∅c0 4023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rab 3023 df-v 3306 df-dif 3683 df-nul 4024 |
This theorem is referenced by: rabn0 4066 rabnc 4070 dffr2 5183 frc 5184 frirr 5195 wereu2 5215 tz6.26 5824 fndmdifeq0 6438 fnnfpeq0 6560 wemapso2 8574 wemapwe 8707 hashbclem 13349 hashbc 13350 smuval2 15327 smupvallem 15328 smu01lem 15330 smumullem 15337 phiprmpw 15604 hashgcdeq 15617 prmreclem4 15746 cshws0 15931 pmtrsn 18060 efgsfo 18273 00lsp 19104 dsmm0cl 20207 ordthauslem 21310 pthaus 21564 xkohaus 21579 hmeofval 21684 mumul 25027 musum 25037 ppiub 25049 lgsquadlem2 25226 umgrnloop0 26124 lfgrnloop 26140 numedglnl 26159 usgrnloop0ALT 26217 lfuhgr1v0e 26266 nbuhgr 26359 nbumgr 26363 uhgrnbgr0nb 26370 nbgr0vtxlem 26371 vtxd0nedgb 26515 vtxdusgr0edgnelALT 26523 1loopgrnb0 26529 usgrvd0nedg 26560 vtxdginducedm1lem4 26569 wwlks 26859 iswwlksnon 26878 iswspthsnon 26882 0enwwlksnge1 26894 wspn0 26965 rusgr0edg 27016 clwwlk 27027 clwwlkn 27072 clwwlkn0 27076 clwwlknon 27156 clwwlknon1nloop 27168 clwwlknondisj 27181 clwwlknondisjOLD 27185 vdn0conngrumgrv2 27269 eupth2lemb 27310 eulercrct 27315 frgrregorufr0 27399 numclwwlk3lemOLD 27471 numclwwlk3lem 27473 ofldchr 30044 measvuni 30507 dya2iocuni 30575 repr0 30919 reprlt 30927 reprgt 30929 subfacp1lem6 31395 frpomin 31965 frpomin2 31966 poimirlem26 33667 poimirlem27 33668 cnambfre 33690 itg2addnclem2 33694 areacirclem5 33736 0dioph 37761 undisjrab 38924 supminfxr 40109 dvnprodlem3 40583 pimltmnf2 41334 pimconstlt0 41337 pimgtpnf2 41340 rmsupp0 42576 lcoc0 42638 |
Copyright terms: Public domain | W3C validator |