![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2793 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2793 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | rabeqf 3221 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 {crab 2945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 |
This theorem is referenced by: rabeqdv 3225 difeq1 3754 ifeq1 4123 ifeq2 4124 elfvmptrab 6345 supp0 7345 suppvalfn 7347 suppsnop 7354 fnsuppres 7367 pmvalg 7910 supeq2 8395 oieq2 8459 scott0 8787 hsmex2 9293 iooval2 12246 fzval2 12367 hashbc 13275 elovmpt2wrd 13380 phimullem 15531 mrcfval 16315 ipoval 17201 psgnfval 17966 pmtrsn 17985 lspfval 19021 lsppropd 19066 rrgval 19335 aspval 19376 psrval 19410 mvrfval 19468 ltbval 19519 opsrval 19522 dsmmbas2 20129 dsmmelbas 20131 frlmbas 20147 m1detdiag 20451 clsfval 20877 ordtrest 21054 ordtrest2lem 21055 ordtrest2 21056 isptfin 21367 islocfin 21368 xkoval 21438 xkopt 21506 qtopres 21549 kqval 21577 tsmsval2 21980 cncfval 22738 isphtpy 22827 cfilfval 23108 iscmet 23128 ttgval 25800 uvtx0 26342 cusgredg 26376 cffldtocusgr 26399 vtxdg0e 26426 1hevtxdg1 26458 hashecclwwlkn1 27041 umgrhashecclwwlk 27042 konigsbergiedgw 27226 ordtprsval 30092 ordtrestNEW 30095 ordtrest2NEWlem 30096 omsval 30483 orrvcval4 30654 orrvcoel 30655 orrvccel 30656 snmlfval 31438 funray 32372 fvray 32373 itg2addnclem2 33592 cntotbnd 33725 docaffvalN 36727 docafvalN 36728 lcfr 37191 hlhilocv 37566 pellfundval 37761 elmnc 38023 rgspnval 38055 rfovd 38612 fsovd 38619 fsovcnvlem 38624 ntrneibex 38688 k0004val0 38769 rabeqd 39590 dvnprodlem1 40479 dvnprodlem2 40480 dvnprodlem3 40481 dvnprod 40482 fvmptrab 41631 assintopmap 42167 rmsuppss 42476 mndpsuppss 42477 scmsuppss 42478 dmatALTval 42514 dmatALTbas 42515 |
Copyright terms: Public domain | W3C validator |