Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabdiophlem2 Structured version   Visualization version   GIF version

Theorem rabdiophlem2 37683
Description: Lemma for arithmetic diophantine sets. Reuse a polynomial expression under a new quantifier. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Hypothesis
Ref Expression
rabdiophlem2.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
rabdiophlem2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) ∈ (mzPoly‘(1...𝑀)))
Distinct variable groups:   𝑢,𝑁,𝑡   𝑢,𝑀,𝑡   𝑡,𝐴
Allowed substitution hint:   𝐴(𝑢)

Proof of Theorem rabdiophlem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2793 . . . . . 6 𝑎𝐴
2 nfcsb1v 3582 . . . . . 6 𝑢𝑎 / 𝑢𝐴
3 csbeq1a 3575 . . . . . 6 (𝑢 = 𝑎𝐴 = 𝑎 / 𝑢𝐴)
41, 2, 3cbvmpt 4782 . . . . 5 (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) = (𝑎 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)
54fveq1i 6230 . . . 4 ((𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁))) = ((𝑎 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)‘(𝑡 ↾ (1...𝑁)))
6 rabdiophlem2.1 . . . . . . 7 𝑀 = (𝑁 + 1)
76mapfzcons1cl 37598 . . . . . 6 (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) → (𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑𝑚 (1...𝑁)))
87adantl 481 . . . . 5 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑𝑚 (1...𝑀))) → (𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑𝑚 (1...𝑁)))
9 mzpf 37616 . . . . . . . 8 ((𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴):(ℤ ↑𝑚 (1...𝑁))⟶ℤ)
10 eqid 2651 . . . . . . . . 9 (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) = (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)
1110fmpt 6421 . . . . . . . 8 (∀𝑢 ∈ (ℤ ↑𝑚 (1...𝑁))𝐴 ∈ ℤ ↔ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴):(ℤ ↑𝑚 (1...𝑁))⟶ℤ)
129, 11sylibr 224 . . . . . . 7 ((𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑢 ∈ (ℤ ↑𝑚 (1...𝑁))𝐴 ∈ ℤ)
1312ad2antlr 763 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑𝑚 (1...𝑀))) → ∀𝑢 ∈ (ℤ ↑𝑚 (1...𝑁))𝐴 ∈ ℤ)
14 nfcsb1v 3582 . . . . . . . 8 𝑢(𝑡 ↾ (1...𝑁)) / 𝑢𝐴
1514nfel1 2808 . . . . . . 7 𝑢(𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ
16 csbeq1a 3575 . . . . . . . 8 (𝑢 = (𝑡 ↾ (1...𝑁)) → 𝐴 = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
1716eleq1d 2715 . . . . . . 7 (𝑢 = (𝑡 ↾ (1...𝑁)) → (𝐴 ∈ ℤ ↔ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ))
1815, 17rspc 3334 . . . . . 6 ((𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑𝑚 (1...𝑁)) → (∀𝑢 ∈ (ℤ ↑𝑚 (1...𝑁))𝐴 ∈ ℤ → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ))
198, 13, 18sylc 65 . . . . 5 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑𝑚 (1...𝑀))) → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ)
20 csbeq1 3569 . . . . . 6 (𝑎 = (𝑡 ↾ (1...𝑁)) → 𝑎 / 𝑢𝐴 = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
21 eqid 2651 . . . . . 6 (𝑎 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑎 / 𝑢𝐴) = (𝑎 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)
2220, 21fvmptg 6319 . . . . 5 (((𝑡 ↾ (1...𝑁)) ∈ (ℤ ↑𝑚 (1...𝑁)) ∧ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 ∈ ℤ) → ((𝑎 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)‘(𝑡 ↾ (1...𝑁))) = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
238, 19, 22syl2anc 694 . . . 4 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑𝑚 (1...𝑀))) → ((𝑎 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑎 / 𝑢𝐴)‘(𝑡 ↾ (1...𝑁))) = (𝑡 ↾ (1...𝑁)) / 𝑢𝐴)
245, 23syl5req 2698 . . 3 (((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) ∧ 𝑡 ∈ (ℤ ↑𝑚 (1...𝑀))) → (𝑡 ↾ (1...𝑁)) / 𝑢𝐴 = ((𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁))))
2524mpteq2dva 4777 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) = (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))))
26 ovexd 6720 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (1...𝑀) ∈ V)
27 fzssp1 12422 . . . . 5 (1...𝑁) ⊆ (1...(𝑁 + 1))
286oveq2i 6701 . . . . 5 (1...𝑀) = (1...(𝑁 + 1))
2927, 28sseqtr4i 3671 . . . 4 (1...𝑁) ⊆ (1...𝑀)
3029a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (1...𝑁) ⊆ (1...𝑀))
31 simpr 476 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)))
32 mzpresrename 37630 . . 3 (((1...𝑀) ∈ V ∧ (1...𝑁) ⊆ (1...𝑀) ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))) ∈ (mzPoly‘(1...𝑀)))
3326, 30, 31, 32syl3anc 1366 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) ↦ ((𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴)‘(𝑡 ↾ (1...𝑁)))) ∈ (mzPoly‘(1...𝑀)))
3425, 33eqeltrd 2730 1 ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) ∈ (mzPoly‘(1...𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  csb 3566  wss 3607  cmpt 4762  cres 5145  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  1c1 9975   + caddc 9977  0cn0 11330  cz 11415  ...cfz 12364  mzPolycmzp 37602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-mzpcl 37603  df-mzp 37604
This theorem is referenced by:  elnn0rabdioph  37684  dvdsrabdioph  37691
  Copyright terms: Public domain W3C validator