![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbiia | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted class abstractions (inference rule). (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
rabbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabbiia | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 672 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | abbii 2877 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} |
4 | df-rab 3059 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
5 | df-rab 3059 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
6 | 3, 4, 5 | 3eqtr4i 2792 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {cab 2746 {crab 3054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-rab 3059 |
This theorem is referenced by: rabbii 3325 elneldisjOLD 4108 elnelunOLD 4109 fninfp 6604 fndifnfp 6606 nlimon 7216 dfom2 7232 rankval2 8854 ioopos 12443 prmreclem4 15825 acsfn1 16523 acsfn2 16525 logtayl 24605 ftalem3 25000 ppiub 25128 isuvtx 26497 vtxdginducedm1 26649 finsumvtxdg2size 26656 rgrusgrprc 26695 clwwlknclwwlkdif 27100 clwwlknclwwlkdifsOLD 27102 numclwwlkqhash 27536 ubthlem1 28035 xpinpreima 30261 xpinpreima2 30262 eulerpartgbij 30743 topdifinfeq 33509 rabimbieq 34340 rmydioph 38083 rmxdioph 38085 expdiophlem2 38091 expdioph 38092 fsovrfovd 38805 k0004val0 38954 nzss 39018 hashnzfz 39021 fourierdlem90 40916 fourierdlem96 40922 fourierdlem97 40923 fourierdlem98 40924 fourierdlem99 40925 fourierdlem100 40926 fourierdlem109 40935 fourierdlem110 40936 fourierdlem112 40938 fourierdlem113 40939 sssmf 41453 dfodd6 42060 dfeven4 42061 dfeven2 42072 dfodd3 42073 dfeven3 42080 dfodd4 42081 dfodd5 42082 |
Copyright terms: Public domain | W3C validator |