Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabbida Structured version   Visualization version   GIF version

Theorem rabbida 39795
 Description: Equivalent wff's yield equal restricted class abstractions (deduction rule). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
rabbida.1 𝑥𝜑
rabbida.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rabbida (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})

Proof of Theorem rabbida
StepHypRef Expression
1 rabbida.1 . . 3 𝑥𝜑
2 rabbida.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ex 397 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
41, 3ralrimi 3106 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
5 rabbi 3269 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
64, 5sylib 208 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631  Ⅎwnf 1856   ∈ wcel 2145  ∀wral 3061  {crab 3065 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-ral 3066  df-rab 3070 This theorem is referenced by:  pimgtmnf  41452  smfpimltmpt  41475  smfpimltxrmpt  41487  smfpimgtmpt  41509  smfpimgtxrmpt  41512  smfrec  41516  smfsupmpt  41541  smfinflem  41543  smfinfmpt  41545
 Copyright terms: Public domain W3C validator