![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbi2dva | Structured version Visualization version GIF version |
Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.) |
Ref | Expression |
---|---|
rabbi2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabbi2dva | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3723 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} | |
2 | rabbi2dva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) | |
3 | 2 | rabbidva 3328 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
4 | 1, 3 | syl5eq 2806 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {crab 3054 ∩ cin 3714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-ral 3055 df-rab 3059 df-in 3722 |
This theorem is referenced by: fndmdif 6484 bitsshft 15399 sylow3lem2 18243 leordtvallem1 21216 leordtvallem2 21217 ordtt1 21385 xkoccn 21624 txcnmpt 21629 xkopt 21660 ordthmeolem 21806 qustgphaus 22127 itg2monolem1 23716 lhop1 23976 efopn 24603 dirith 25417 pjvec 28864 pjocvec 28865 neibastop3 32663 diarnN 36920 |
Copyright terms: Public domain | W3C validator |