Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rab0 Structured version   Visualization version   GIF version

Theorem rab0 3988
 Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
rab0 {𝑥 ∈ ∅ ∣ 𝜑} = ∅

Proof of Theorem rab0
StepHypRef Expression
1 df-rab 2950 . 2 {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)}
2 ab0 3984 . . 3 ({𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ ∅ ∧ 𝜑))
3 noel 3952 . . . 4 ¬ 𝑥 ∈ ∅
43intnanr 981 . . 3 ¬ (𝑥 ∈ ∅ ∧ 𝜑)
52, 4mpgbir 1766 . 2 {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅
61, 5eqtri 2673 1 {𝑥 ∈ ∅ ∣ 𝜑} = ∅
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 383   = wceq 1523   ∈ wcel 2030  {cab 2637  {crab 2945  ∅c0 3948 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-nul 3949 This theorem is referenced by:  rabsnif  4290  fvmptrabfv  6348  supp0  7345  sup00  8411  scott0  8787  psgnfval  17966  pmtrsn  17985  00lsp  19029  rrgval  19335  uvtx0  26342  vtxdg0e  26426  wwlksn  26785  wspthsn  26797  iswwlksnon  26802  iswwlksnonOLD  26803  iswspthsnon  26806  iswspthsnonOLD  26807  clwwlknOLD  26986  clwwlk0on0  27067  fvmptrab  41631  fvmptrabdm  41632
 Copyright terms: Public domain W3C validator