![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r2al | Structured version Visualization version GIF version |
Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020.) |
Ref | Expression |
---|---|
r2al | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1908 | . 2 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) | |
2 | 1 | r2allem 2966 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1521 ∈ wcel 2030 ∀wral 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-ral 2946 |
This theorem is referenced by: r3al 2969 r2ex 3090 soss 5082 raliunxp 5294 codir 5551 qfto 5552 fununi 6002 dff13 6552 mpt22eqb 6811 tz7.48lem 7581 qliftfun 7875 zorn2lem4 9359 isirred2 18747 cnmpt12 21518 cnmpt22 21525 dchrelbas3 25008 cvmlift2lem12 31422 dfso2 31770 dfpo2 31771 inxpss 34223 inxpss3 34225 isdomn3 38099 |
Copyright terms: Public domain | W3C validator |