MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1val1 Structured version   Visualization version   GIF version

Theorem r1val1 8687
Description: The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of [Enderton] p. 202. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1val1 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem r1val1
StepHypRef Expression
1 simpr 476 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → 𝐴 = ∅)
21fveq2d 6233 . . . . 5 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) = (𝑅1‘∅))
3 r10 8669 . . . . 5 (𝑅1‘∅) = ∅
42, 3syl6eq 2701 . . . 4 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) = ∅)
5 0ss 4005 . . . . 5 ∅ ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)
65a1i 11 . . . 4 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → ∅ ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
74, 6eqsstrd 3672 . . 3 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
8 nfv 1883 . . . . 5 𝑥 𝐴 ∈ dom 𝑅1
9 nfcv 2793 . . . . . 6 𝑥(𝑅1𝐴)
10 nfiu1 4582 . . . . . 6 𝑥 𝑥𝐴 𝒫 (𝑅1𝑥)
119, 10nfss 3629 . . . . 5 𝑥(𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)
12 simpr 476 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝐴 = suc 𝑥)
1312fveq2d 6233 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) = (𝑅1‘suc 𝑥))
14 eleq1 2718 . . . . . . . . . . . 12 (𝐴 = suc 𝑥 → (𝐴 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
1514biimpac 502 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → suc 𝑥 ∈ dom 𝑅1)
16 r1funlim 8667 . . . . . . . . . . . . 13 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1716simpri 477 . . . . . . . . . . . 12 Lim dom 𝑅1
18 limsuc 7091 . . . . . . . . . . . 12 (Lim dom 𝑅1 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
1917, 18ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1)
2015, 19sylibr 224 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝑥 ∈ dom 𝑅1)
21 r1sucg 8670 . . . . . . . . . 10 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2220, 21syl 17 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2313, 22eqtrd 2685 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) = 𝒫 (𝑅1𝑥))
24 vex 3234 . . . . . . . . . . 11 𝑥 ∈ V
2524sucid 5842 . . . . . . . . . 10 𝑥 ∈ suc 𝑥
2625, 12syl5eleqr 2737 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝑥𝐴)
27 ssiun2 4595 . . . . . . . . 9 (𝑥𝐴 → 𝒫 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
2826, 27syl 17 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝒫 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
2923, 28eqsstrd 3672 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
3029ex 449 . . . . . 6 (𝐴 ∈ dom 𝑅1 → (𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)))
3130a1d 25 . . . . 5 (𝐴 ∈ dom 𝑅1 → (𝑥 ∈ On → (𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))))
328, 11, 31rexlimd 3055 . . . 4 (𝐴 ∈ dom 𝑅1 → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)))
3332imp 444 . . 3 ((𝐴 ∈ dom 𝑅1 ∧ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
34 r1limg 8672 . . . . 5 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
35 r1tr 8677 . . . . . . . . 9 Tr (𝑅1𝑥)
36 dftr4 4790 . . . . . . . . 9 (Tr (𝑅1𝑥) ↔ (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
3735, 36mpbi 220 . . . . . . . 8 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥)
3837a1i 11 . . . . . . 7 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
3938ralrimivw 2996 . . . . . 6 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → ∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
40 ss2iun 4568 . . . . . 6 (∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥) → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4139, 40syl 17 . . . . 5 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4234, 41eqsstrd 3672 . . . 4 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4342adantrl 752 . . 3 ((𝐴 ∈ dom 𝑅1 ∧ (𝐴 ∈ V ∧ Lim 𝐴)) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
44 limord 5822 . . . . . . 7 (Lim dom 𝑅1 → Ord dom 𝑅1)
4517, 44ax-mp 5 . . . . . 6 Ord dom 𝑅1
46 ordsson 7031 . . . . . 6 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
4745, 46ax-mp 5 . . . . 5 dom 𝑅1 ⊆ On
4847sseli 3632 . . . 4 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
49 onzsl 7088 . . . 4 (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
5048, 49sylib 208 . . 3 (𝐴 ∈ dom 𝑅1 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
517, 33, 43, 50mpjao3dan 1435 . 2 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
52 ordtr1 5805 . . . . . . . 8 (Ord dom 𝑅1 → ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
5345, 52ax-mp 5 . . . . . . 7 ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
5453ancoms 468 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 ∈ dom 𝑅1)
5554, 21syl 17 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
56 simpr 476 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥𝐴)
57 ordelord 5783 . . . . . . . . . 10 ((Ord dom 𝑅1𝐴 ∈ dom 𝑅1) → Ord 𝐴)
5845, 57mpan 706 . . . . . . . . 9 (𝐴 ∈ dom 𝑅1 → Ord 𝐴)
5958adantr 480 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → Ord 𝐴)
60 ordelsuc 7062 . . . . . . . 8 ((𝑥𝐴 ∧ Ord 𝐴) → (𝑥𝐴 ↔ suc 𝑥𝐴))
6156, 59, 60syl2anc 694 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑥𝐴 ↔ suc 𝑥𝐴))
6256, 61mpbid 222 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → suc 𝑥𝐴)
6354, 19sylib 208 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → suc 𝑥 ∈ dom 𝑅1)
64 simpl 472 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝐴 ∈ dom 𝑅1)
65 r1ord3g 8680 . . . . . . 7 ((suc 𝑥 ∈ dom 𝑅1𝐴 ∈ dom 𝑅1) → (suc 𝑥𝐴 → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴)))
6663, 64, 65syl2anc 694 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (suc 𝑥𝐴 → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴)))
6762, 66mpd 15 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴))
6855, 67eqsstr3d 3673 . . . 4 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
6968ralrimiva 2995 . . 3 (𝐴 ∈ dom 𝑅1 → ∀𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
70 iunss 4593 . . 3 ( 𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴) ↔ ∀𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
7169, 70sylibr 224 . 2 (𝐴 ∈ dom 𝑅1 𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
7251, 71eqssd 3653 1 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3o 1053   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  wss 3607  c0 3948  𝒫 cpw 4191   ciun 4552  Tr wtr 4785  dom cdm 5143  Ord word 5760  Oncon0 5761  Lim wlim 5762  suc csuc 5763  Fun wfun 5920  cfv 5926  𝑅1cr1 8663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-r1 8665
This theorem is referenced by:  rankr1ai  8699  r1val3  8739
  Copyright terms: Public domain W3C validator