MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1suc Structured version   Visualization version   GIF version

Theorem r1suc 8671
Description: Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.)
Assertion
Ref Expression
r1suc (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))

Proof of Theorem r1suc
StepHypRef Expression
1 r1sucg 8670 . 2 (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
2 r1fnon 8668 . . . 4 𝑅1 Fn On
3 fndm 6028 . . . 4 (𝑅1 Fn On → dom 𝑅1 = On)
42, 3ax-mp 5 . . 3 dom 𝑅1 = On
54eqcomi 2660 . 2 On = dom 𝑅1
61, 5eleq2s 2748 1 (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  𝒫 cpw 4191  dom cdm 5143  Oncon0 5761  suc csuc 5763   Fn wfn 5921  cfv 5926  𝑅1cr1 8663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-r1 8665
This theorem is referenced by:  r1sdom  8675  r1sssuc  8684  tz9.12lem3  8690  rankval2  8719  rankpwi  8724  dfac12lem2  9004  dfac12r  9006  ackbij2lem2  9100  ackbij2lem3  9101  wunr1om  9579  r1wunlim  9597  tskr1om  9627  inar1  9635  inatsk  9638  grur1a  9679  grothomex  9689  rankeq1o  32403  elhf2  32407  0hf  32409  aomclem1  37941
  Copyright terms: Public domain W3C validator