![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1sscl | Structured version Visualization version GIF version |
Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1sscl | ⊢ ((𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐶 ⊆ 𝐴) → 𝐶 ∈ (𝑅1‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1pwss 8810 | . . 3 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝒫 𝐴 ⊆ (𝑅1‘𝐵)) | |
2 | 1 | adantr 466 | . 2 ⊢ ((𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐶 ⊆ 𝐴) → 𝒫 𝐴 ⊆ (𝑅1‘𝐵)) |
3 | elpw2g 4955 | . . 3 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → (𝐶 ∈ 𝒫 𝐴 ↔ 𝐶 ⊆ 𝐴)) | |
4 | 3 | biimpar 463 | . 2 ⊢ ((𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐶 ⊆ 𝐴) → 𝐶 ∈ 𝒫 𝐴) |
5 | 2, 4 | sseldd 3751 | 1 ⊢ ((𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐶 ⊆ 𝐴) → 𝐶 ∈ (𝑅1‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2144 ⊆ wss 3721 𝒫 cpw 4295 ‘cfv 6031 𝑅1cr1 8788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-om 7212 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-r1 8790 |
This theorem is referenced by: sswf 8834 |
Copyright terms: Public domain | W3C validator |