MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1ordg Structured version   Visualization version   GIF version

Theorem r1ordg 8679
Description: Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.)
Assertion
Ref Expression
r1ordg (𝐵 ∈ dom 𝑅1 → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))

Proof of Theorem r1ordg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . 4 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐵 ∈ dom 𝑅1)
2 r1funlim 8667 . . . . . . . 8 (Fun 𝑅1 ∧ Lim dom 𝑅1)
32simpri 477 . . . . . . 7 Lim dom 𝑅1
4 limord 5822 . . . . . . 7 (Lim dom 𝑅1 → Ord dom 𝑅1)
53, 4ax-mp 5 . . . . . 6 Ord dom 𝑅1
6 ordsson 7031 . . . . . 6 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
75, 6ax-mp 5 . . . . 5 dom 𝑅1 ⊆ On
87sseli 3632 . . . 4 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
91, 8syl 17 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐵 ∈ On)
10 onelon 5786 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
118, 10sylan 487 . . . 4 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐴 ∈ On)
12 suceloni 7055 . . . 4 (𝐴 ∈ On → suc 𝐴 ∈ On)
1311, 12syl 17 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → suc 𝐴 ∈ On)
14 eloni 5771 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
15 ordsucss 7060 . . . . . 6 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
1614, 15syl 17 . . . . 5 (𝐵 ∈ On → (𝐴𝐵 → suc 𝐴𝐵))
1716imp 444 . . . 4 ((𝐵 ∈ On ∧ 𝐴𝐵) → suc 𝐴𝐵)
188, 17sylan 487 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → suc 𝐴𝐵)
19 eleq1 2718 . . . . . 6 (𝑥 = suc 𝐴 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1))
20 fveq2 6229 . . . . . . 7 (𝑥 = suc 𝐴 → (𝑅1𝑥) = (𝑅1‘suc 𝐴))
2120eleq2d 2716 . . . . . 6 (𝑥 = suc 𝐴 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
2219, 21imbi12d 333 . . . . 5 (𝑥 = suc 𝐴 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))))
23 eleq1 2718 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝑅1𝑦 ∈ dom 𝑅1))
24 fveq2 6229 . . . . . . 7 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
2524eleq2d 2716 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1𝑦)))
2623, 25imbi12d 333 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦))))
27 eleq1 2718 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
28 fveq2 6229 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
2928eleq2d 2716 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
3027, 29imbi12d 333 . . . . 5 (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦))))
31 eleq1 2718 . . . . . 6 (𝑥 = 𝐵 → (𝑥 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1))
32 fveq2 6229 . . . . . . 7 (𝑥 = 𝐵 → (𝑅1𝑥) = (𝑅1𝐵))
3332eleq2d 2716 . . . . . 6 (𝑥 = 𝐵 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1𝐵)))
3431, 33imbi12d 333 . . . . 5 (𝑥 = 𝐵 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (𝐵 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝐵))))
35 fvex 6239 . . . . . . . 8 (𝑅1𝐴) ∈ V
3635pwid 4207 . . . . . . 7 (𝑅1𝐴) ∈ 𝒫 (𝑅1𝐴)
37 limsuc 7091 . . . . . . . . 9 (Lim dom 𝑅1 → (𝐴 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1))
383, 37ax-mp 5 . . . . . . . 8 (𝐴 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1)
39 r1sucg 8670 . . . . . . . 8 (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
4038, 39sylbir 225 . . . . . . 7 (suc 𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
4136, 40syl5eleqr 2737 . . . . . 6 (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
4241a1i 11 . . . . 5 (suc 𝐴 ∈ On → (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
43 limsuc 7091 . . . . . . . 8 (Lim dom 𝑅1 → (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
443, 43ax-mp 5 . . . . . . 7 (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1)
45 r1tr 8677 . . . . . . . . . . 11 Tr (𝑅1𝑦)
46 dftr4 4790 . . . . . . . . . . 11 (Tr (𝑅1𝑦) ↔ (𝑅1𝑦) ⊆ 𝒫 (𝑅1𝑦))
4745, 46mpbi 220 . . . . . . . . . 10 (𝑅1𝑦) ⊆ 𝒫 (𝑅1𝑦)
48 r1sucg 8670 . . . . . . . . . 10 (𝑦 ∈ dom 𝑅1 → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
4947, 48syl5sseqr 3687 . . . . . . . . 9 (𝑦 ∈ dom 𝑅1 → (𝑅1𝑦) ⊆ (𝑅1‘suc 𝑦))
5049sseld 3635 . . . . . . . 8 (𝑦 ∈ dom 𝑅1 → ((𝑅1𝐴) ∈ (𝑅1𝑦) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5150a2i 14 . . . . . . 7 ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5244, 51syl5bir 233 . . . . . 6 ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5352a1i 11 . . . . 5 (((𝑦 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑦) → ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦))))
54 simprl 809 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴𝑥)
55 simplr 807 . . . . . . . . . . . . . 14 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴 ∈ On)
56 sucelon 7059 . . . . . . . . . . . . . 14 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
5755, 56sylibr 224 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴 ∈ On)
58 limord 5822 . . . . . . . . . . . . . 14 (Lim 𝑥 → Ord 𝑥)
5958ad2antrr 762 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → Ord 𝑥)
60 ordelsuc 7062 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ Ord 𝑥) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6157, 59, 60syl2anc 694 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6254, 61mpbird 247 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴𝑥)
63 limsuc 7091 . . . . . . . . . . . 12 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
6463ad2antrr 762 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6562, 64mpbid 222 . . . . . . . . . 10 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴𝑥)
66 simprr 811 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝑥 ∈ dom 𝑅1)
67 ordtr1 5805 . . . . . . . . . . . . . 14 (Ord dom 𝑅1 → ((𝐴𝑥𝑥 ∈ dom 𝑅1) → 𝐴 ∈ dom 𝑅1))
685, 67ax-mp 5 . . . . . . . . . . . . 13 ((𝐴𝑥𝑥 ∈ dom 𝑅1) → 𝐴 ∈ dom 𝑅1)
6962, 66, 68syl2anc 694 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴 ∈ dom 𝑅1)
7069, 39syl 17 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
7136, 70syl5eleqr 2737 . . . . . . . . . 10 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
72 fveq2 6229 . . . . . . . . . . . 12 (𝑦 = suc 𝐴 → (𝑅1𝑦) = (𝑅1‘suc 𝐴))
7372eleq2d 2716 . . . . . . . . . . 11 (𝑦 = suc 𝐴 → ((𝑅1𝐴) ∈ (𝑅1𝑦) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
7473rspcev 3340 . . . . . . . . . 10 ((suc 𝐴𝑥 ∧ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)) → ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
7565, 71, 74syl2anc 694 . . . . . . . . 9 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
76 eliun 4556 . . . . . . . . 9 ((𝑅1𝐴) ∈ 𝑦𝑥 (𝑅1𝑦) ↔ ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
7775, 76sylibr 224 . . . . . . . 8 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ 𝑦𝑥 (𝑅1𝑦))
78 simpll 805 . . . . . . . . 9 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → Lim 𝑥)
79 r1limg 8672 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8066, 78, 79syl2anc 694 . . . . . . . 8 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8177, 80eleqtrrd 2733 . . . . . . 7 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1𝑥))
8281expr 642 . . . . . 6 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)))
8382a1d 25 . . . . 5 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (∀𝑦𝑥 (suc 𝐴𝑦 → (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦))) → (𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥))))
8422, 26, 30, 34, 42, 53, 83tfindsg 7102 . . . 4 (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝐵) → (𝐵 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
8584impr 648 . . 3 (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝐵𝐵 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1𝐵))
869, 13, 18, 1, 85syl22anc 1367 . 2 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → (𝑅1𝐴) ∈ (𝑅1𝐵))
8786ex 449 1 (𝐵 ∈ dom 𝑅1 → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  wss 3607  𝒫 cpw 4191   ciun 4552  Tr wtr 4785  dom cdm 5143  Ord word 5760  Oncon0 5761  Lim wlim 5762  suc csuc 5763  Fun wfun 5920  cfv 5926  𝑅1cr1 8663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-r1 8665
This theorem is referenced by:  r1ord3g  8680  r1ord  8681
  Copyright terms: Public domain W3C validator