![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1fin | Structured version Visualization version GIF version |
Description: The first ω levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013.) |
Ref | Expression |
---|---|
r1fin | ⊢ (𝐴 ∈ ω → (𝑅1‘𝐴) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6229 | . . 3 ⊢ (𝑛 = ∅ → (𝑅1‘𝑛) = (𝑅1‘∅)) | |
2 | 1 | eleq1d 2715 | . 2 ⊢ (𝑛 = ∅ → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘∅) ∈ Fin)) |
3 | fveq2 6229 | . . 3 ⊢ (𝑛 = 𝑚 → (𝑅1‘𝑛) = (𝑅1‘𝑚)) | |
4 | 3 | eleq1d 2715 | . 2 ⊢ (𝑛 = 𝑚 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘𝑚) ∈ Fin)) |
5 | fveq2 6229 | . . 3 ⊢ (𝑛 = suc 𝑚 → (𝑅1‘𝑛) = (𝑅1‘suc 𝑚)) | |
6 | 5 | eleq1d 2715 | . 2 ⊢ (𝑛 = suc 𝑚 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin)) |
7 | fveq2 6229 | . . 3 ⊢ (𝑛 = 𝐴 → (𝑅1‘𝑛) = (𝑅1‘𝐴)) | |
8 | 7 | eleq1d 2715 | . 2 ⊢ (𝑛 = 𝐴 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘𝐴) ∈ Fin)) |
9 | r10 8669 | . . 3 ⊢ (𝑅1‘∅) = ∅ | |
10 | 0fin 8229 | . . 3 ⊢ ∅ ∈ Fin | |
11 | 9, 10 | eqeltri 2726 | . 2 ⊢ (𝑅1‘∅) ∈ Fin |
12 | r1funlim 8667 | . . . . . . . . 9 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
13 | 12 | simpri 477 | . . . . . . . 8 ⊢ Lim dom 𝑅1 |
14 | limomss 7112 | . . . . . . . 8 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ ω ⊆ dom 𝑅1 |
16 | 15 | sseli 3632 | . . . . . 6 ⊢ (𝑚 ∈ ω → 𝑚 ∈ dom 𝑅1) |
17 | r1sucg 8670 | . . . . . 6 ⊢ (𝑚 ∈ dom 𝑅1 → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1‘𝑚)) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝑚 ∈ ω → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1‘𝑚)) |
19 | 18 | eleq1d 2715 | . . . 4 ⊢ (𝑚 ∈ ω → ((𝑅1‘suc 𝑚) ∈ Fin ↔ 𝒫 (𝑅1‘𝑚) ∈ Fin)) |
20 | pwfi 8302 | . . . 4 ⊢ ((𝑅1‘𝑚) ∈ Fin ↔ 𝒫 (𝑅1‘𝑚) ∈ Fin) | |
21 | 19, 20 | syl6rbbr 279 | . . 3 ⊢ (𝑚 ∈ ω → ((𝑅1‘𝑚) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin)) |
22 | 21 | biimpd 219 | . 2 ⊢ (𝑚 ∈ ω → ((𝑅1‘𝑚) ∈ Fin → (𝑅1‘suc 𝑚) ∈ Fin)) |
23 | 2, 4, 6, 8, 11, 22 | finds 7134 | 1 ⊢ (𝐴 ∈ ω → (𝑅1‘𝐴) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 ∅c0 3948 𝒫 cpw 4191 dom cdm 5143 Lim wlim 5762 suc csuc 5763 Fun wfun 5920 ‘cfv 5926 ωcom 7107 Fincfn 7997 𝑅1cr1 8663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-r1 8665 |
This theorem is referenced by: ackbij2lem2 9100 ackbij2 9103 |
Copyright terms: Public domain | W3C validator |