Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1elwf Structured version   Visualization version   GIF version

Theorem r1elwf 8772
 Description: Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1elwf (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))

Proof of Theorem r1elwf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 r1funlim 8742 . . . . . 6 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 481 . . . . 5 Lim dom 𝑅1
3 limord 5897 . . . . 5 (Lim dom 𝑅1 → Ord dom 𝑅1)
4 ordsson 7106 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
52, 3, 4mp2b 10 . . . 4 dom 𝑅1 ⊆ On
6 elfvdm 6333 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
75, 6sseldi 3707 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ On)
8 r1tr 8752 . . . . . 6 Tr (𝑅1𝐵)
9 trss 4869 . . . . . 6 (Tr (𝑅1𝐵) → (𝐴 ∈ (𝑅1𝐵) → 𝐴 ⊆ (𝑅1𝐵)))
108, 9ax-mp 5 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → 𝐴 ⊆ (𝑅1𝐵))
11 elpwg 4274 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → (𝐴 ∈ 𝒫 (𝑅1𝐵) ↔ 𝐴 ⊆ (𝑅1𝐵)))
1210, 11mpbird 247 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐴 ∈ 𝒫 (𝑅1𝐵))
13 r1sucg 8745 . . . . 5 (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1𝐵))
146, 13syl 17 . . . 4 (𝐴 ∈ (𝑅1𝐵) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1𝐵))
1512, 14eleqtrrd 2806 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐴 ∈ (𝑅1‘suc 𝐵))
16 suceq 5903 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
1716fveq2d 6308 . . . . 5 (𝑥 = 𝐵 → (𝑅1‘suc 𝑥) = (𝑅1‘suc 𝐵))
1817eleq2d 2789 . . . 4 (𝑥 = 𝐵 → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵)))
1918rspcev 3413 . . 3 ((𝐵 ∈ On ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
207, 15, 19syl2anc 696 . 2 (𝐴 ∈ (𝑅1𝐵) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
21 rankwflemb 8769 . 2 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
2220, 21sylibr 224 1 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1596   ∈ wcel 2103  ∃wrex 3015   ⊆ wss 3680  𝒫 cpw 4266  ∪ cuni 4544  Tr wtr 4860  dom cdm 5218   “ cima 5221  Ord word 5835  Oncon0 5836  Lim wlim 5837  suc csuc 5838  Fun wfun 5995  ‘cfv 6001  𝑅1cr1 8738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-om 7183  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-r1 8740 This theorem is referenced by:  rankr1ai  8774  pwwf  8783  sswf  8784  unwf  8786  uniwf  8795  rankonidlem  8804  r1pw  8821  r1pwcl  8823  rankr1id  8838  tcrank  8860  dfac12lem2  9079  r1limwun  9671  r1wunlim  9672  inatsk  9713
 Copyright terms: Public domain W3C validator