![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1elss | Structured version Visualization version GIF version |
Description: The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1elss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
r1elss | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝐴 ⊆ ∪ (𝑅1 “ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1elssi 8706 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) | |
2 | r1elss.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | 2 | tz9.12 8691 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) |
4 | dfss3 3625 | . . . 4 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On)) | |
5 | r1fnon 8668 | . . . . . . . 8 ⊢ 𝑅1 Fn On | |
6 | fnfun 6026 | . . . . . . . 8 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
7 | funiunfv 6546 | . . . . . . . 8 ⊢ (Fun 𝑅1 → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On)) | |
8 | 5, 6, 7 | mp2b 10 | . . . . . . 7 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ (𝑅1 “ On) |
9 | 8 | eleq2i 2722 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ 𝑦 ∈ ∪ (𝑅1 “ On)) |
10 | eliun 4556 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) | |
11 | 9, 10 | bitr3i 266 | . . . . 5 ⊢ (𝑦 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) |
12 | 11 | ralbii 3009 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝑦 ∈ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) |
13 | 4, 12 | bitri 264 | . . 3 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) ↔ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) |
14 | 8 | eleq2i 2722 | . . . 4 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ 𝐴 ∈ ∪ (𝑅1 “ On)) |
15 | eliun 4556 | . . . 4 ⊢ (𝐴 ∈ ∪ 𝑥 ∈ On (𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) | |
16 | 14, 15 | bitr3i 266 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) |
17 | 3, 13, 16 | 3imtr4i 281 | . 2 ⊢ (𝐴 ⊆ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
18 | 1, 17 | impbii 199 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝐴 ⊆ ∪ (𝑅1 “ On)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 Vcvv 3231 ⊆ wss 3607 ∪ cuni 4468 ∪ ciun 4552 “ cima 5146 Oncon0 5761 Fun wfun 5920 Fn wfn 5921 ‘cfv 5926 𝑅1cr1 8663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-r1 8665 |
This theorem is referenced by: unir1 8714 tcwf 8784 tcrank 8785 rankcf 9637 wfgru 9676 |
Copyright terms: Public domain | W3C validator |