![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.3rz | Structured version Visualization version GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.) |
Ref | Expression |
---|---|
r19.3rz.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
r19.3rz | ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 3964 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | biimt 349 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑))) | |
3 | 1, 2 | sylbi 207 | . 2 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑))) |
4 | df-ral 2946 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
5 | r19.3rz.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
6 | 5 | 19.23 2118 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑)) |
7 | 4, 6 | bitri 264 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 𝑥 ∈ 𝐴 → 𝜑)) |
8 | 3, 7 | syl6bbr 278 | 1 ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 ∃wex 1744 Ⅎwnf 1748 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∅c0 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-v 3233 df-dif 3610 df-nul 3949 |
This theorem is referenced by: r19.28z 4096 r19.3rzv 4097 r19.27z 4103 2reu4a 41510 |
Copyright terms: Public domain | W3C validator |